• 제목/요약/키워드: 의사결정 나무모형

검색결과 228건 처리시간 0.026초

데이터마이닝을 활용한 사랑의 형태에 따른 연인관계 몰입수준 및 관계 지속여부 예측 (Prediction of commitment and persistence in heterosexual involvements according to the styles of loving using a datamining technique)

  • 박윤주
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.69-85
    • /
    • 2016
  • 연인과의 성공적인 관계형성은 인생의 만족감을 결정짓는 핵심적인 요소 중 하나이다. 기존에 심리학 분야에서는 성공적인 연인관계에 영향을 미치는 요인들에 대한 다양한 연구가 수행되어 왔으나, 주로 통계적인 분석기법에 기반하고 있기 때문에 복잡한 비선형의 관계를 분석하고, 특징을 추출하는 데에는 한계가 있었다. 이에, 본 연구는, 기존의 통계적인 분석 기법과 더불어, 데이터마이닝의 의사결정나무 분석기법을 활용하여 사랑의 형태에 따른 연인관계의 몰입(commitment) 수준과 관계지속 여부를 분석하였다. 특히, 기존 연구에서 도출된 주요 변인들 이외에 사랑의 여섯 가지 형태인 에로스(eros), 루두스(ludus), 스트로게(storge), 매니아(mania), 프래그마(pragma) 그리고 아가페(agape)를 추가적으로 고려하여, 이들이 연인관계에서 서로에 대한 몰입수준 및 연인관계 지속여부에 어떠한 영향을 미치는지 분석하고, 예측하는 모형을 수립하였다. 본 연구에는 실제 남녀커플 105쌍, 총 210명에 대한 데이터가 활용되었다. 본 연구결과 연인관계 몰입수준 및 관계 지속여부의 영향요인으로, 기존에 심리학 분야에서 제시된 변수들 이외에, 에로스, 아가페, 프래그마 등이 유의한 영향을 미친다는 것을 확인하였다. 특히, 남성은 아가페적 사랑의 형태가 몰입에 중요한 영향을 미치는 반면, 여성은 에로스적 사랑의 형태가 더욱 중요한 영향을 미치는 것으로 나타났다. 또한, 연인관계 지속여부에는 남성의 나르시시즘, 만족, 투자 및 매니아적 성향이 영향을 주고 있는 것으로 나타난 반면, 여성의 경우, 여성이 남성을 매니아적으로 사랑하는 정도만이 영향을 주고 있어, 남성이 관계의 지속 또는 결별에 더욱 결정적인 영향을 미치고 있는 것을 알 수 있었다. 이러한 연구는 데이터마이닝의 적용분야를 심리학 영역으로 확장한 융합연구로, 연인관계에 대한 새로운 분석을 시도하였다는 점에서 의의가 있으며, 조화로운 연인관계를 형성하는데 실질적인 시사점을 제공할 수 있을 것으로 기대된다.

일개 종합병원의 민간 건강검진 수검자의 검진이용 특성, 건강행태 및 건강관리 수준 분석 (Analysis of Utilization Characteristics, Health Behaviors and Health Management Level of Participants in Private Health Examination in a General Hospital)

  • 김유미;박종호;김원중
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.301-311
    • /
    • 2013
  • 본 연구의 목적은 2차 종합병원급 건강검진센터를 이용한 민간 종합검진 환자의 검진 이용특성과 이들의 건강행태 및 건강관리 수준을 분석하는 것이다. 이를 위해 대전지역 일개 2차 종합병원급 건강검진센터의 2011년 20,696명의 민간 건강검진 수검자를 대상으로 이들의 2001년에서 2011년까지 11년간의 수검자료 150,501건을 분석하였다. 민간 종합검진 수검자의 검진군 분류를 위한 군집분석은 K-means기법의 z-score표준화 방법을 이용하여 분류하였으며, 정기/비정기 검진 분류모형 개발을 위해 로지스틱회귀분석, 의사결정나무, 신경망 분석을 이용하였다. 개발된 비정기 검진군 분류 모형에 따라 신규 검진군 중 비정기 검진군이 될 확률이 높은 1,000명을 추출하여 고객관리사업 대상자로 하였다. 분석결과, 수검자는 신규 검진군, 정기 검진군, 비정기 검진군으로 분류하였다. 신규 검진군은 30대가 많고, 신장질환 의심자의 비율이 높았다. 정기 검진군은 남자, 이상지혈증 의심 비율이 높았다. 비정기 검진군은 흡연율과 운동부족 비율이 높았고, 빈혈 및 당뇨의심 비율이 높았다. 의사결정나무 분석결과 비정기 검진환자의 특성에 영향을 미치는 변수로는 성별, 연령, 거주지, 운동, 빈혈, 이상지혈증, 당뇨, 비만, 간질환 등이었다. 특히 여자 수검자로서 빈혈 검사는 정상, 운동을 하지 않는 군이면서 비만이 의심되는 수검자의 비정기적 수검율은 71.4%에 달하였다. 이러한 연구결과 토대로 맞춤형 고객관리 사업을 진행한다면 건강검진센터 효율적인 운영에 기여할 수 있을 것이다.

머신러닝을 이용한 급성심근경색증 환자의 퇴원 시 사망 중증도 보정 방법 개발에 대한 융복합 연구 (Convergence Study in Development of Severity Adjustment Method for Death with Acute Myocardial Infarction Patients using Machine Learning)

  • 백설경;박혜진;강성홍;최준영;박종호
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.217-230
    • /
    • 2019
  • 본 연구는 기존 동반질환을 이용한 중증도 보정 방법의 제한점을 보완하기 위해 급성심근경색증 환자의 맞춤형 중증도 보정방법을 개발하고, 이의 타당성을 평가하기 위해 수행되었다. 이를 위하여 질병관리본부에서 2006년부터 2015년까지 10년간 수집한 퇴원손상심층조사 자료 중 주진단이 급성심근경색증인 한국표준질병사인분류(KCD-7) 코드 I20.0~I20.9의 대상자를 추출하였고, 동반질환 중증도 보정 도구로는 기존 활용되고 있는 CCI(Charlson comorbidity index), ECI(Elixhauser comorbidity index)와 새로이 제안하는 CCS(Clinical Classification Software)를 사용하였다. 이에 대한 중증도 보정 사망예측모형 개발을 위하여 머신러닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신기법을 활용하여 비교하였고 각각의 AUC(Area Under Curve)를 이용하여 개발된 모형을 평가하였다. 이를 평가한 결과 중증도 보정도구로는 CCS 가 가장 우수한 것으로 나타났으며, 머신러닝 기법 중에서는 서포트 벡터 머신을 이용한 모형의 예측력이 가장 우수한 것으로 확인되었다. 이에 향후 의료서비스 결과평가 등 중증도 보정을 위한 연구에서는 본 연구에서 제시한 맞춤형 중증도 보정방법과 머신러닝 기법을 활용하도록 하는 것을 제안한다.

비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형 (An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems)

  • 이현욱;김지훈;안현철
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.125-141
    • /
    • 2012
  • 본 연구는 최근 그 중요성이 한층 높아지고 있는 침입탐지시스템(IDS, Intrusion Detection System)의 침입탐지모형을 개선하기 위한 방안으로 유전자 알고리즘에 기반한 새로운 통합모형을 제시한다. 본 연구의 제안모형은 서로 상호보완적 관계에 있는 이분류 모형인 로지스틱 회귀분석(LOGIT, Logistic Regression), 의사결정나무(DT, Decision Tree), 인공신경망 (ANN, Artificial Neural Network), 그리고 SVM(Support Vector Machine)의 예측결과에 적절한 가중치를 부여해 최종 예측결과를 산출하도록 하였는데, 이 때 최적 가중치의 탐색을 위한 방법으로는 유전자 알고리즘을 사용한다. 아울러, 본 연구에서는 1차적으로 오탐지율을 최소화하는 최적의 모형을 산출한 뒤, 이어 비대칭 오류비용 개념을 반영해 오탐지로 인해 발생할 수 있는 전체 비용을 최소화할 수 있는 최적 임계치를 탐색, 최종적으로 가장 비용 효율적인 침입탐지모형을 도출하고자 하였다. 본 연구에서는 제안모형의 우수성을 확인하기 위해, 국내 한 공공기관의 보안센서로부터 수집된 로그 데이터를 바탕으로 실증 분석을 수행하였다. 그 결과, 본 연구에서 제안한 유전자 알고리즘 기반 통합모형이 인공신경망이나 SVM만으로 구성된 단일모형에 비해 학습용과 검증용 데이터셋 모두에서 더 우수한 탐지율을 보임을 확인할 수 있었다. 비대칭 오류비용을 고려한 전체 비용의 관점에서도 단일모형으로 된 비교모형에 비해 본 연구의 제안모형이 더 낮은 비용을 나타냄을 확인할 수 있었다. 이렇게 실증적으로 그 효과가 검증된 본 연구의 제안 모형은 앞으로 보다 지능화된 침입탐지시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.

Support Vector Machine 기법을 이용한 고객의 구매의도 예측 (Forecasting of Customer's Purchasing Intention Using Support Vector Machine)

  • 김진화;남기찬;이상종
    • 경영정보학연구
    • /
    • 제10권2호
    • /
    • pp.137-158
    • /
    • 2008
  • 기업 경쟁력 강화의 중요한 이슈인 대량 개별화(mass-customization)의 실행을 위하여 통합 고객관계 관리 프로세스로서의 CRM(customer relationship management)에 대한 관심과 활용에 대한 필요성은 점점 더 높아지고 있다. 특히, 기존 고객들의 구매 정보를 기반으로 고객의 구매 패턴을 파악하고 의도를 예측하는 것은 오늘날 실질적인 판매 전략을 수립하는 마케팅 분야에서 상당히 큰 비중을 차지하고 있다. 고객의 구매의도 예측에는 대량의 데이터로부터 과거에 인지하지 못했던 의미 있고, 근거 있는 정보를 추출하는 데이터마이닝(datamining)이 주로 사용되고 있다. 기존의 구매의도 예측에 사용된 데이터마이닝 기법들은 주로 신경망(neural networks)과 로지스틱 회귀분석(logistic regression analysis)이었는데, 예측 정확성 및 모형 구축의 어려움으로 인한 다양한 문제점들이 제기되고 있는 실정이다. 따라서, 본 논문에서는 기존의 기법들이 가지고 있는 단점들을 개선하기 위하여 신경망과 로지스틱 회귀분석 외에 연관규칙(association rule), 연관성 매트릭스(association matrix), 의사결정 나무(decision tree), 베이지안 망(bayesian network), SVM(support vector machine) 기법들을 추가로 제안하였다. 본 연구의 목적은 고객의 특정 상품에 대한 구매의도 예측을 위하여 새로운 알고리즘을 제시하기보다는 기존의 다양한 데이터마이닝 기법들을 적용시켜 봄으로써, 가장 우수한 예측성과를 나타내는 기법을 발견하는 것이다. 연구에 사용된 자료는 기존의 연구에서는 적용되지 않았던 편의점의 영수증 데이터이다. 예측 목표상품은 카테고리화 된 '우유'와 '냉동식품'이며, 제안된 기법들의 신뢰성을 위하여 전체 데이터를 10개의 training과 test 셋으로 중복되지 않게 구분함과 동시에 10번의 교차 검증(cross validation)을 실시하였다. 실험 결과 SVM이 영수증 데이터를 이용한 고객의 특정 상품에 대한 구매의도 예측에서 가장 우수한 성과를 나타내는 것을 확인하였다.

1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발 (Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models)

  • 이준학;이하늘;강나래;황석환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제56권5호
    • /
    • pp.311-323
    • /
    • 2023
  • 집중호우, 홍수 및 도시침수와 같은 재해를 저감시키기 위하여 자연 재난으로 인한 재해의 발생 여부를 사전에 파악하는 것은 중요하다. 현재 국내는 기상청에서 운영하고 있는 호우주의보 및 호우경보를 발령하고 있지만, 이는 전국에 일괄적인 기준으로 적용하고 있어 사전에 호우로 인한 피해를 명확하게 인지하지 못하고 있는 실정이다. 따라서, 일괄된 기준을 지역적 특성을 반영한 호우특보 기준으로 재설정하고 1시간 후에 강우로 발생할 수 있는 피해의 규모를 예측하고자 하였다. 연구 대상 지역으로는 호우피해가 가장 빈번하게 발생하였던 경기도 지역으로 선정하였고, 강우량 및 호우 피해액 자료를 활용하여 지역적 특성을 고려한 시간단위 재해 유발 강우를 설정하였다. 강우에 의한 호우피해 발생 여부를 예측하는 모형을 개발하기 위해 재해 유발 강우 및 강우 자료를 활용하였으며, 머신러닝 기법인 의사 결정 나무 모형과 랜덤 포레스트 모형을 활용하여 분석 및 비교하였다. 또한 1시간 후의 강우를 예측하기 위한 모형으로는 장단기 메모리, 심층 신경망 모형을 활용하여 분석 및 비교하였다. 최종적으로 예측 모형을 통해 예측된 강우를 훈련된 분류 모형에 적용하여 1시간 후 호우에 의한 규모별 피해 발생 여부를 예측하였고, 이를 1ST-모형이라고 정의하였다. 본 연구를 통해 개발된 1ST-모형을 활용하여 예방 및 대비 차원의 재난관리를 실시한다면 호우로 인한 피해를 저감하는데 기여 할 수 있을 것으로 판단된다.

퇴원손상심층조사 자료를 이용한 의료기관 중증도 보정 사망비 비교 (Comparison of Hospital Standardized Mortality Ratio Using National Hospital Discharge Injury Data)

  • 박종호;김유미;김성수;김원중;강성홍
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1739-1750
    • /
    • 2012
  • 본 연구는 의료서비스의 결과지표인 의료기관 중증도 보정 사망비(HSMR)를 산출하고, 비교하여 행정자료를 이용한 의료서비스 결과를 평가할 수 있는 방안을 마련하고자 수행되었다. 이를 위해서 질병관리본부의 2007-2008년의 퇴원손상환자 63,664건의 자료를 분석하였다. 중증도 보정모형 개발을 위해 데이터마이닝을 이용한 의사결정나무와 로지스틱 회귀분석을 실시하였으며, 최종 모형으로 선정된 로지스틱 회귀분석에는 성별, 재원일수, Elixhauser 상병지수, 입원경로, 주상병 변수가 포함되었다. 퇴원시 사망에 영향을 끼치는 이러한 변수를 보정 후 병원간의 중증도 보정 사망비(HSMR)를 비교한 결과 병원간의 중증도 보정 사망비(HSMR)는 차이가 있는 것으로 나타남에 따라 병원의 의료서비스 수준 차이가 있는 것이 확인되었다(HSMR 범위: 55.6-201.6). 본 연구를 통하여 병원간의 퇴원시 사망률을 비교할 수 있는 방법이 개발되었으므로 향후에 이를 이용하여 다양한 의료의 질 향상 활동을 할 수 있는 방안을 마련하여야 할 것이다.

데이터마이닝 기법을 활용한 불법주차 영향요인 분석 (A Study on the Analysis Effect Factors of Illegal Parking Using Data Mining Techniques)

  • 이창희;김명수;서소민
    • 한국ITS학회 논문지
    • /
    • 제13권4호
    • /
    • pp.63-72
    • /
    • 2014
  • 우리나라는 급속한 경제발전과 고속성장으로 생활수준이 향상되면서 자동차 수요가 급격히 증가함에 따라 교통혼잡, 교통사고, 주차문제 등의 문제가 발생되고 있다. 자동차 증가로 인한 주차문제 중 불법주차는 교통혼잡을 야기하고 주차공간으로 인한 이웃간 분쟁의 원인이 되어 사회적 문제로 대두되고 있다. 이에 본 연구에서는 지방 광역시중 승용차 수단분담률이 높음에도 불구하고 불법주차 단속건수가 상대적을 적은 대전광역시를 대상으로 주차조사를 실시하였으며 불법주차에 대한 원론적인 문제를 파악하기 위해 의사결정나무모형 Exhaustive CHAID분석을 통하여 운전자들의 주차행위에 있어 불법주차를 선택하는 과정과 그에 따른 영향요인을 탐색하여 불법주차의 원인을 파악하고 해결하는 방안을 제시하고자 한다. 분석결과 불법주차를 선택하는 영향요인으로는 거리, 단속경험, 직업, 이용시간대 순으로 영향을 미치는 것으로 나타났으며 예측 모형은 최종적으로 4가지 노드가 도출되었다. 분석결과에 따른 불법주차의 해결방안으로는 공영주차장의 추가설치와 생계유지 및 조업차량의 주차공간 확보가 우선되어야 하고 불법주차 단속강화와 시민의식 고취를 위한 캠페인의 활성화가 필요하다.

SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용 (Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm)

  • 이슬기;신택수
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.111-124
    • /
    • 2018
  • 본 연구는 만성질환 중의 하나인 고지혈증 유병을 예측하는 분류모형을 개발하고자 한다. 이를 위해 SVM과 meta-learning 알고리즘을 이용하여 성과를 비교하였다. 또한 각 알고리즘에서 성과를 향상시키기 위해 변수선정 방법을 통해 유의한 변수만을 선정하여 투입하여 분석하였고 이 결과 역시 각각 성과를 비교하였다. 본 연구목적을 달성하기 위해 한국의료패널 2012년 자료를 이용하였고, 변수 선정을 위해 세 가지 방법을 사용하였다. 먼저 단계적 회귀분석(stepwise regression)을 실시하였다. 둘째, 의사결정나무(decision tree) 알고리즘을 사용하였다. 마지막으로 유전자 알고리즘을 사용하여 변수를 선정하였다. 한편, 이렇게 선정된 변수를 기준으로 SVM, meta-learning 알고리즘 등을 이용하여 고지혈증 환자분류 예측모형을 비교하였고, TP rate, precision 등을 사용하여 분류 성과를 비교분석하였다. 이에 대한 분석결과는 다음과 같다. 첫째, 모든 변수를 투입하여 분류한 결과 SVM의 정확도는 88.4%, 인공신경망의 정확도는 86.7%로 SVM의 정확도가 좀 더 높았다. 둘째, stepwise를 통해 선정된 변수만을 투입하여 분류한 결과 전체 변수를 투입하였을 때보다 각각 정확도가 약간 높았다. 셋째, 의사결정나무에 의해 선정된 변수 3개만을 투입하였을 때 인공신경망의 정확도가 SVM보다 높았다. 유전자 알고리즘을 통해 선정된 변수를 투입하여 분류한 결과 SVM은 88.5%, 인공신경망은 87.9%의 분류 정확도를 보여 주었다. 마지막으로, 본 연구에서 제안하는 meta-learning 알고리즘인 스태킹(stacking)을 적용한 결과로서, SVM과 MLP의 예측결과를 메타 분류기인 SVM의 입력변수로 사용하여 예측한 결과, 고지혈증 분류 정확도가 meta-learning 알고리즘 중에서는 가장 높은 것으로 나타났다.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.