• 제목/요약/키워드: 의사결정트리 학습

검색결과 71건 처리시간 0.026초

사물인터넷 환경에서 제품 불량 예측을 위한 기계 학습 모델에 관한 연구 (A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment)

  • 구진희
    • 융합정보논문지
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 2017
  • 사물인터넷 환경에서 인간의 개입 없는 지능화된 서비스를 위해서는 IoT 디바이스에서 생성되는 빅데이터로 부터 정상 패턴을 학습하고 이를 기반으로 불량, 오작동과 같은 이상 징후에 대해 예측하는 과정이 요구된다. 본 연구의 목적은 제품 공정의 다양한 기기에서 발생되는 빅데이터를 분석함으로써 제품 불량을 예측할 수 있는 기계 학습모델을 구현하는 것이다. 기계 학습 모델은 어느 정도 볼륨을 가진 기존 데이터를 기반으로 분석을 해야 하므로 빅데이터 분석도구 R을 사용하였으며, 제품 공정에서 수집된 데이터에는 제품에 대한 불량 여부가 포함되어 있으므로 지도 학습 모델을 활용하였다. 연구의 결과, 제품 불량에 영향을 주는 변수 및 변수 조건을 분류하였고, 의사결정 트리를 기반으로 제품의 불량 여부에 대한 예측 모델을 제시하였다. 또한, ROC Curve를 이용한 모델의 적합성 및 성능평가 분석에서 모델의 예측력은 상당히 높게 나타났다.

랜덤 포레스트를 이용한 심전도 기반 생체 인증 (ECG-based Biometric Authentication Using Random Forest)

  • 김정균;이강복;홍상기
    • 전자공학회논문지
    • /
    • 제54권6호
    • /
    • pp.100-105
    • /
    • 2017
  • 본 논문은 개인 인증 알고리즘에 관한 것으로 심전도를 이용한 생체 인증 방식은 특정 보정기준점을 추출하는 방법과 그렇지 않은 방법으로 분류할 수 있으며 본 논문에서 제안하는 방법은 특정 보정기준점을 추출하지 않는 방법으로 이산 코사인 변환과 랜덤 포레스트 분류기를 사용하였다. 심전도 신호는 R-Peak 점을 기준으로 단일 심박으로 나누었으며 각 심박의 특징 추출을 위해 이산 코사인 변환을 적용하였다. 이산 코사인 변환 계수는 정보가 저주파에 집중되는 특성이 있으므로 초기 저주파에 해당하는 40까지 값을 특징으로 랜덤 포레스트 분류기를 구성하였다. 랜덤 포레스트는 의사결정 트리의 앙상블 분류기로 결정 트리를 기본으로 하고 있으므로 빠른 학습 속도와 많은 양의 데이터 처리 능력, 다양한 클래스를 분류할 수 있어 실생활에 적용 가능하며 무엇보다 ID의 승인과 거절을 위한 임계값을 분류기 내부에서 조절할 수 있어 오 분류에 강건한 알고리즘을 구성할 수 있다. 18개의 심전도 파일로 구성된 MIT-BIT Normal Sinus Rhythm 데이터베이스를 선정하여 성능을 평가하였으며 99.99%의 심전도 인식률을 보였다.

인공지능을 이용한 학습부진 특성 추출 및 예측 모델 연구 (Extracting characteristics of underachievers learning using artificial intelligence and researching a prediction model)

  • 양자영;문경희;박성호
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.510-518
    • /
    • 2022
  • 국가수준에서 시행되는 진단평가는 학교에서 학습부진이 있는 학생을 조기 발견하는 것이 매우 중요하다. 본연구는 부산교육종단의 2019년 중학교 1학년의 데이터를 입력하여 2020년 성취여부를 판별하는 인공지능 모델을 구축하고 분석하였다. 머신러닝 알고리즘으로 중학교 국어, 영어, 수학 기초학력을 예측하는 예측모형을 개발하고, 다음 학년 예측에도 78%, 82%, 83% 의 정확도를 보이는 것을 확인하였다. 또한, 중학교 과목별 성취예측 의사결정트리를 그려서 과정을 분석해보면서, 성취 예측에 영향을 미치는 특성들은 어떠한 것들이 있는지 살펴보았다.

AI 참모 구축을 위한 의사결심조건의 데이터 모델링 방안 (A Methodology of Decision Making Condition-based Data Modeling for Constructing AI Staff)

  • 한창희;신규용;최성훈;문상우;이치훈;이종관
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.237-246
    • /
    • 2020
  • 본 논문에서는 의사결심 지원체계인 전장관리체계의 지능화를 위해 의사결심 조건에 기초한 데이터 모델링 방안을 제시하였다. 인간처럼 보고 식별도 하고, 자유롭게 움직임을 통해 원하는 위치에 도달하는 모습은 쉽게 이해되거나 실생활에서 체감하고 있는데 비해, 원하는 위치에 도달한 이후 인간 인지 행위 중 가장 중요한 하나인 의사 결심 판단을 구현했다거나 혹은 그러한 예제를 아직은 찾아 볼 수 없는 실정이다. 도착을 원했던 회의실에 인간을 대신해 에이전트가 오기는 했지만 판단을 도와주거나 대신 해주어야 할 임무인 예컨대, 가격 정책을 올릴 것인지 내릴 것인지, 지휘관이 심사숙고하고 있는 예컨대, 역습을 하는 것이 현명한지 아닌지에 대한 판단을 지원해 주지 못하고 있다. 군 지휘 통제의 현상과 현안을 고찰하였고, 각 상황에 대한 판단을 내릴 때 기계참모의 조언이 가능하게하기 위한 많은 양의 데이터 확보가 가능하도록, 현 지휘통제 체계를 변경시킬 방안으로 의사결심 조건에 기초한 데이터 모델링 방안을 제시하였다. 또한 제시한 방안에 대해 기계가 하는 의사결정의 한 예시로써 의사결정 트리 방법론을 적용하였다. 이를 통해 향후 AI 상황 판단 참모가 어떠한 모습으로 우리에게 다가올지에 대한 혜안을 제공하고자 하였다.

파충류와 양서류 분류를 위한 인공지능 교육 기반의 융합 교육 프로그램 개발 (Development of Artificial Intelligence Education based Convergence Education Program for Classifying of Reptiles and Amphibians)

  • 이소율;이영준
    • 융합정보논문지
    • /
    • 제11권12호
    • /
    • pp.168-175
    • /
    • 2021
  • 본 연구에서는 인공지능 교육을 활용하여 생물 교육의 파충류와 양서류를 분류에 대한 이해를 높이고, AI(Artificial Intelligence) 역량을 증대할 수 있도록 탈학문적(Transdisciplinary) 융합 교육 프로그램을 개발하였다. 중심 내용으로는 생물교육에서 오랫동안 다루어진 주제인 파충류와 양서류의 분류를 의사결정 트리 및 ML4K(Machine Learnig for Kids)를 활용하여 해결하는 것으로, 총 3차시 분량으로 설계하였다. 개발된 교육 프로그램에 대하여 전문가 검토를 실시하였고, 그 결과 I-CVI 값이 .88~1.00을 나타내어 내용 타당도를 확보하였다. 이 교육 프로그램은 학습자들에게 정보 교육의 인공지능에 관한 학습 내용과 생물 교육의 척추 동물의 분류에 관한 학습 내용에 대해 동시에 학습할 수 있다는 강점이 있다. 또한, 인공지능 활용 부분에서는 인지 부하를 최소로 하도록 구성되어 있기 때문에 모든 교사들이 쉽게 활용할 수 있다는 점이 특징이다.

악성코드 패밀리 분류를 위한 API 특징 기반 앙상블 모델 학습 (API Feature Based Ensemble Model for Malware Family Classification)

  • 이현종;어성율;황두성
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.531-539
    • /
    • 2019
  • 본 논문에서는 악성코드 패밀리 분류를 위한 훈련 데이터의 특징을 제안하고, 앙상블 모델을 이용한 다중 분류 성능을 분석한다. 악성코드 실행 파일로부터 API와 DLL 데이터를 추출하여 훈련 데이터를 구성하며, 의사 결정 트리기반 Random Forest와 XGBoost 알고리즘으로 모델을 학습한다. 악성코드에서 빈번히 사용되는 API와 DLL 정보를 분석하며, 고차원의 훈련 데이터 특징을 저차원의 특징 표현으로 변환시켜, 악성코드 탐지와 패밀리 분류를 위한 API, API-DLL, DLL-CM 특징을 제안한다. 제안된 특징 선택 방법은 데이터 차원 축소와 빠른 학습의 장점을 제공한다. 성능 비교에서 악성코드 탐지율은 Random Forest가 93.0%, 악성코드 패밀리 분류 정확도는 XGBoost가 92.0%, 그리고 정상코드를 포함하는 테스트 오탐률은 Random Forest와 XGBoost가 3.5%이다.

의사결정 트리를 이용한 학습 에이전트 단기주가예측 시스템 개발 (A Development for Short-term Stock Forecasting on Learning Agent System using Decision Tree Algorithm)

  • 서장훈;장현수
    • 대한안전경영과학회지
    • /
    • 제6권2호
    • /
    • pp.211-229
    • /
    • 2004
  • The basis of cyber trading has been sufficiently developed with innovative advancement of Internet Technology and the tendency of stock market investment has changed from long-term investment, which estimates the value of enterprises, to short-term investment, which focuses on getting short-term stock trading margin. Hence, this research shows a Short-term Stock Price Forecasting System on Learning Agent System using DTA(Decision Tree Algorithm) ; it collects real-time information of interest and favorite issues using Agent Technology through the Internet, and forms a decision tree, and creates a Rule-Base Database. Through this procedure the Short-term Stock Price Forecasting System provides customers with the prediction of the fluctuation of stock prices for each issue in near future and a point of sales and purchases. A Human being has the limitation of analytic ability and so through taking a look into and analyzing the fluctuation of stock prices, the Agent enables man to trace out the external factors of fluctuation of stock market on real-time. Therefore, we can check out the ups and downs of several issues at the same time and figure out the relationship and interrelation among many issues using the Agent. The SPFA (Stock Price Forecasting System) has such basic four phases as Data Collection, Data Processing, Learning, and Forecasting and Feedback.

머신러닝 기법을 이용한 유량 자료 생산 방법 (Estimation of River Flow Data Using Machine Learning)

  • 강노을;이지훈;이정훈;이충대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.261-261
    • /
    • 2020
  • 물관리의 기본이 되는 연속적인 유량 자료 확보를 위해서는 정확도 높은 수위-유량 관계 곡선식 개발이 필수적이다. 수위-유량 관계곡선식은 모든 수문시설 설계의 기초가 되며 홍수, 가뭄 등 물재해 대응을 위해서도 중요한 의미를 가지고 있다. 그러나 일반적으로 유량 측정은 많은 비용과 시간이 들고, 식생성장, 단면변화 등의 통제특성(control)이 변함에 따라 구간분리, 기간분리와 같은 비선형적인 양상이 나타나 자료 해석에 어려움이 존재한다. 특히, 국내 하천의 경우 자연적 및 인위적인 환경 변화가 다양하여 지점 및 기간에 따라 세밀한 분석이 요구된다. 머신러닝(Machine Learning)이란 데이터를 통해 컴퓨터가 스스로 학습하여 모델을 구축하고 성능을 향상시키는 일련의 과정을 뜻한다. 기존의 수위-유량 관계곡선식은 개발자의 판단에 의해 데이터의 종류와 기간 등을 설정하여 회귀식의 파라미터를 산출한다면, 머신러닝은 유효한 전체 데이터를 이용해 스스로 학습하여 자료 간 상관성을 찾아내 모델을 구축하고 성능을 지속적으로 향상 시킬 수 있다. 머신러닝은 충분한 수문자료가 확보되었다는 전제 하에 복잡하고 가변적인 수자원 환경을 반영하여 유량 추정의 정확도를 지속적으로 향상시킬 수 있다는 이점을 가지고 있다. 본 연구는 머신러닝의 대표적인 알고리즘들을 활용하여 유량을 추정하는 모델을 구축하고 성능을 비교·분석하였다. 대상지역은 안정적인 수량을 확보하고 있는 한강수계의 거운교 지점이며, 사용자료는 2010~2018년의 시간, 수위, 유량, 수면폭 등 이다. 프로그램은 파이썬을 기반으로 한 머신러닝 라이브러리인 사이킷런(sklearn)을 사용하였고 알고리즘은 랜덤포레스트 회귀, 의사결정트리, KNN(K-Nearest Neighbor), rgboost을 적용하였다. 학습(train) 데이터는 입력자료 종류별로 조합하여 6개의 세트로 구분하여 모델을 구축하였고, 이를 적용해 검증(test) 데이터를 RMSE(Roog Mean Square Error)로 평가하였다. 그 결과 모델 및 입력 자료의 조합에 따라 3.67~171.46로 다소 넓은 범위의 값이 도출되었다. 그 중 가장 우수한 유형은 수위, 연도, 수면폭 3개의 입력자료를 조합하여 랜덤포레스트 회귀 모델에 적용한 경우이다. 비교를 위해 동일한 검증 데이터를 한국수문조사연보(2018년) 내거운교 지점의 수위별 수위-유량 곡선식을 이용해 유량을 추정한 결과 RMSE가 3.76이 산출되어, 머신러닝이 세분화된 수위-유량 곡선식과 비슷한 수준까지 성능을 내는 것으로 확인되었다. 본 연구는 양질의 유량자료 생산을 위해 기 구축된 수문자료를 기반으로 머신러닝 기법의 적용 가능성을 검토한 기초 연구로써, 국내 효율적인 수문자료 측정 및 수위-유량 곡선 산출에 도움이 될 수 있을 것으로 판단된다. 향후 수자원 환경 및 통제특성에 영향을 미치는 다양한 영향변수를 파악하기 위해 기상자료, 취수량 등의 입력 자료를 적용할 필요가 있으며, 머신러닝 내 비지도학습인 딥러닝과 같은 보다 정교한 모델에 대한 추가적인 연구도 수행되어야 할 것이다.

  • PDF

쉴드 TBM 디스크 커터 교체 유무 판단을 위한 머신러닝 분류기법 성능 비교 (Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM)

  • 김윤희;홍지연;김범주
    • 한국터널지하공간학회 논문집
    • /
    • 제22권5호
    • /
    • pp.575-589
    • /
    • 2020
  • 최근 국내 터널에서 지속적으로 증가하고 있는 쉴드 TBM 공법의 주된 굴착도구는 디스크 커터로 굴진과정에서 자연스럽게 마모가 발생하고 이는 TBM의 굴진효능을 현저히 저하시키기 때문에 적절한 시기에 교체하는 것이 중요하다. 따라서 본 연구에서는 디스크 커터 교체 여부를 판단할 수 있는 예측 모델을 머신러닝 기법을 사용한 방법으로 제안하였다. 이를 위해 국내 기 시공된 쉴드 TBM 현장의 데이터 중 디스크 커터 소모에 상관성이 높은 굴진데이터(TBM 기계데이터, 지반정보 등)와 교체이력을 입력데이터로 사용하여 다양한 머신러닝 분류기법 중 서포트 벡터 머신, 최근접이웃 알고리즘, 의사결정트리 알고리즘을 사용하여 최적의 예측 모델을 구축하고 모델의 성능을 평가하기 위하여 분류성능평가 지표로 비교 분석하였다.

설명가능한 인공지능기반의 인공지능 교육 프로그램 개발 (A Study to Design the Instructional Program based on Explainable Artificial intelligence)

  • 박다빈;신승기
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.149-157
    • /
    • 2021
  • 2022년 개정 교육과정에 인공지능 교육 도입을 앞두고 인공지능을 학습 소재로 한 다양한 수업들이 개발되어야 하는 시점이다. 본 연구에서는 설계기반연구를 활용하여 설명가능한 인공지능을 기반한 인공지능 교육 프로그램을 개발하였다. 인공지능의 기초, 활용, 윤리 세 분야를 골고루 포괄하며 실생활 사례와도 쉽게 연결시킬 수 있는 설명가능한 인공지능을 핵심 주제로 설정하였다. 일반적인 설계기반연구(Design-based research, DBR)에서는 3차 이상의 반복적인 과정이 이루어지지만 본 연구 결과는 1차 설계, 적용 및 평가에 대한 결과를 바탕으로 연구가 진행되었다. 추후 학교 현장에 적용하여 3차 수정 및 보완을 바탕으로 더욱 완성된 설명가능한 인공지능을 주제로 한 프로그램을 개발하고자 한다. 본 연구가 학교 현장에 도입되는 인공지능 교육의 발전에 도움이 되기를 기대한다.

  • PDF