Journal of the Korean Data and Information Science Society
/
v.24
no.1
/
pp.161-170
/
2013
The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.
Park, Il-Su;Kim, Eun-Ju;Kim, Yoo-Mi;Hong, Sung-Ok;Kim, Young-Taek;Kang, Sung-Hong
Journal of Digital Convergence
/
v.13
no.1
/
pp.353-366
/
2015
The purpose of this study was to examine how region-specific characteristics affect the occurrence of cardiac arrest. To analyze, we combined a unique data set including key indicators of health condition and cardiac arrest occurrence at the 244 small administrative districts. Our data came from two main sources in Korea Center For Disease Control and Prevention (KCDC): 2010 Out-of-Hospital Cardiac Arrest Surveillance and Community Health Survey. We analyzed data by using multiple regression, geographically weighted regression and decision tree. Decision tree model is selected as the final model to explain regional variations of cardiac arrest. Factors of regional variations of cardiac arrest occurrence are population density, diagnosis rates of hypertension, stress level, participating screening level, high drinking rate, and smoking rate. Taken as a whole, accounting for geographical variations of health conditions, health behaviors and other socioeconomic factors are important when regionally customized health policy is implemented to decrease the cardiac arrest occurrence.
The purpose of this study is to develop a convergence inpatient medical service patient experience management model(IMSPEMM) that can help in the management strategy of a medical institution to create a patient-centered medical culture. Using the original data from the 2018 Medical Service Experience Survey, 593 people with medical services inpatient(MSI) over the age of 15 were analyzed. By using the decision tree model, we developed a prediction model for overall satisfaction(OS) with the inpatient medical service experience(IMSE) and the intention to recommend patient experience(RI), and were classified into 4 and 7 types. The accuracy of the model was 68.9% and 78.3%. The OS level of IMSE was the nurse area and the hospital room noise management area, and the RI decision factor was the nurse area. It is significant that the IMSPEMM for MSI was presented and confirmed that the nurse area and the noise management area of the hospital room are important factors for the inpatient experience. It is considered that further research is needed to generalize the IMSPEMM.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.08a
/
pp.155-159
/
2008
In this thesis, in order to develop a new classification model of Sasang Constitutional medical types, which is helpful for improving the accuracy of diagnosis of medical types. various data-mining classification models such as discriminant analysis. decision trees analysis, neural networks analysis, logistics regression analysis, clustering analysis which are main classification methods were applied to the questionnaires of medical type classification. In this manner, a model which scientifically classifies constitutional medical types in the field of Sasang Constitutional Medicine, one of a traditional Korean medicine, has been developed. Also, the above-mentioned analysis models were systematically compared and analyzed. In this study, a classification of Sasang constitutional medical types was developed based on the discriminate analysis model and decision trees analysis model of which accuracy is relatively high, of which analysis procedure is easy to understand and to explain and which are easy to implement. Also, a diagnosis system of Sasang constitution was implemented applying the two analysis models.
Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in gneiss area, a prediction technique was developed by the use of a decision tree model, which is one of the statistical analysis methods. The slope hazards data of Seoul and Kyonggi Province, which were induced by heavy rainfall in 1998, were 104 sections in gneiss area. The number of data applied in developing prediction model was 61 sections except a vacant value. Among these data, the number of data occurred slope hazards was 34 sections and the number of data non-occurred slope hazards was 27 sections. The statistical analyses using the decision tree model were applied to chi-square statistics, gini index and entrophy index. As the results of analyses, a slope angle, a degree of saturation and an elevation were selected as the classification standard. The prediction model of decision tree using entrophy index is most likely accurate. The classification standard of the selected prediction model is composed of the slope angle, the degree of saturation and the elevation from the first choice stage. The classification standard values of the slope angle, the degree of saturation and elevation are $17.9^{\circ}$, 52.1% and 320 m, respectively.
Communications for Statistical Applications and Methods
/
v.18
no.1
/
pp.137-146
/
2011
Long-term care insurance is a social insurance system that provides benefits to the elderly who have difficulty taking care of themselves for a period of at least 6 months. This system was started in July, 2008 and it is very important to set proper judgement ratings for the approval process. We try to develop and improve the judgement rating system using decision tree models. Our tree model is found to be more stable and efficient than the previous one.
Proceedings of the Korea Society for Industrial Systems Conference
/
2009.05a
/
pp.120-125
/
2009
본 논문에서는 통계적 분류방법을 이용하여 문화재 자료의 분석을 수행하였다. 분류방법으로는 선형판별분석, 로지스틱회귀분석, 의사결정나무분석, 신경망분석, SVM분석을 사용하였다. 각각의 분류방법에 대한 개념 및 이론에 대해 간략히 소개하고, 실제자료 분석에서는 "지역별 문화재 통계분석 및 모형개발 연구 1차(2008)"에 사용된 자료 중 익산시 자료를 근거로 매장문화재에 대한 분류방법별 적합모형을 구축하였다. 구축된 모형과 모의실험의 결과를 통해 각각의 적합모형에 대한 비교를 수행하여 모형의 성능을 비교하였다. 분석에 사용된 도구로는 최근 가장 관심을 갖는 R-project를 사용하였다.
Journal of the Korea Institute of Building Construction
/
v.17
no.3
/
pp.295-303
/
2017
Over the past 7 years, the number of victims of construction disasters has been gradually increasing. Compared with projects in other industries, construction projects are highly exposed to safety risks. For this reason, the research methods of predicting and managing the risk of construction disasters are urgently needed that can be applied to a construction site. This study aims to propose a prediction model for a construction disaster using the decision tree technique. The developed the model is reviewed the applicability by evaluating its accuracy based on disaster data. The top three of the prediction values obtained from the proposed model were enumerated, and then the cumulative accuracy were also calculated. The prediction accuracy was 40 percent for the first value, but the cumulative accuracy was 80 percent. Thus, as more disaster data was accumulated, the cumulative accuracy appeared to be higher. If utilized in construction sites, the model proposed in this study would contribute to a reduction in the rate of construction disasters.
Proceedings of the Korean Operations and Management Science Society Conference
/
2005.05a
/
pp.280-286
/
2005
본 논문은 이분형 목적변수를 가지는 데이터에서, 의사결정나무나 신경망과 같은 지도 학습(Supervised Learning)의 훈련을 통한 각종 예측 및 분류 정확도를 향상시키기 위해서 오차 패턴을 이용한 새로운 Hybrid 데이터 마이닝 기법을 제안한다. 오차 패턴을 이용한 Hybrid 기법이란 데이터 마이닝의 서로 다른 기법을 각 데이터에 적용한 다음 기법간의 불일치되는 부분만을 다시 패턴화 하여, 이를 최종 모형에 적용하여, 기존에 1개의 방법만을 사용하였을 경우보다, 더욱 좋은 정확도를 가질 수 있도록 하는 방법이다. 본 기법의 검증을 위하여, 10개의 실제 검증용 자료를 사용하였으며, 분석 결과 신경망과 의사결정나무 분석과 같은 기존의 방법보다 전체적으로 예측력이 향상됨을 보였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.359-366
/
2000
기업의 환경에서 이-메일(e-mail)은 회사내의 업무흐름을 완전히 뒤바꾸며 혁명적인 변화를 이끌고 있다. 업무 공간의 극복, 사내 커뮤니케이션의 극대화 등 이-메일이 제공하는 장점이 매우 많다. 그러나 최근 사회적 문제가 되고 있는 스팸 메일(spam mail)의 등장은 이러한 장점의 커다란 반대급부를 제공한다. 스팸메일이란 인터넷이용자들에게 원하지도 않았는데 무작위로 발송되는 광고성 이-메일을 일컫는 말로, 벌크(bulk)메일, 정크(junk)메일, 언솔리시티드(Unsolicited)메일과도 유사한 의미로 사용된다. 스팸메일은 사용자들로 하여금 스트레쓰의 요인이 되게 함은 물론, 이를 발신하고 수신하는 과정에서 이용되는 서버에 엄청난 부하를 줄 뿐만 아니라, 공공의 성격을 지니는 네트웍 자원을 아무런 비용의 지불 없이 독점하게 되는 좋지 않은 결과를 가져오게 된다. 본 연구에서는 데이터마이닝의 기법 중 분류(classification tack) 문제에 적웅이 활발한 인공신경망 (artificial neural networks)과 의사결정나무(decision tree)기법을 이용하여 스팸메일의 분류와 예측을 가능케 하는 모형을 구축한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.