• 제목/요약/키워드: 의사결정나무 모형

검색결과 228건 처리시간 0.022초

기계학습 기반의 영화흥행예측 방법 비교: 인공신경망과 의사결정나무를 중심으로 (A Comparison of Predicting Movie Success between Artificial Neural Network and Decision Tree)

  • 권신혜;박경우;장병희
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권4호
    • /
    • pp.593-601
    • /
    • 2017
  • 본 연구는 영화산업의 가치사슬단계에 따라 각 단계에서 고려할 수 있는 변인을 활용하여 제작/투자, 배급, 상영단계별 모형을 구성하였다. 모형의 예측력을 높이기 위해 회귀분석으로 유의미한 변인을 도출하여 모형을 추가로 설정하였다. 주어진 변인을 바탕으로 기계학습 분석방법인 인공신경망과 의사결정나무 분석방법 간의 예측력 차이를 비교하였다. 분석 결과, 제작/투자 모형과 배급 모형에서 모든 변인을 투입했을 때는 인공신경망의 정확도가 의사결정나무보다 높았으나, 회귀분석결과에 따라 선정된 변인을 투입하였을 때는 의사결정나무의 정확도가 더 높았다. 상영 모형에서는 회귀분석결과의 반영여부와 관계없이 인공신경망의 정확도가 의사결정나무의 정확도보다 높게 나타났다. 본 논문은 영화흥행 예측연구에 기계학습기법을 적용하여 예측성과가 향상됨을 확인하였다는데 의의가 있다. 선형회귀분석 결과를 기계학습기법에 반영함으로써 기존의 선형적 분석방법의 한계를 극복하고자 하였다.

의사결정나무를 이용한 개인휴대통신 해지자 분석

  • 최종후;서두성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1998년도 추계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 1998
  • 본 논문에서는 최근 데이터마이닝의 도구로 활발하게 소개되고 있는 의사결정나무 분석을 이용하여 개인휴대통신의 해지자 분석을 실시한다. 또한 로지스틱 회귀모형을 이용하여 가입고객의 해지 가능성에 대한 점수화를 시도한다.

  • PDF

생명보험사의 개인연금 보험예측 사례를 통해서 본 의사결정나무 분석의 설명변수 축소에 관한 비교 연구 (A study on the comparison of descriptive variables reduction methods in decision tree induction: A case of prediction models of pension insurance in life insurance company)

  • 이용구;허준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권1호
    • /
    • pp.179-190
    • /
    • 2009
  • 금융 산업에서, 의사결정나무 분석은 분류분석을 위해서 널리 사용되는 분석기법이다. 그러나 금융 산업에서 실제로 의사결정나무 분석을 적용할 때, 발생하는 문제점 중 하나는 설명변수의 수가 너무 많다는 점이다. 따라서 모형의 결과에 별 영향을 미치지 않으면서 설명변수의 수를 줄이는 효과적인 방법을 연구할 필요가 있다. 본 연구에서는 의사결정 나무 분석에서 모형의 정확성에 근거한 최선의 변수 선택 방법을 구하기 위하여 다양한 변수 선택방법들을 비교 분석 하였다. 이를 위하여 본 연구에서는 한 보험회사의 연금 보험 상품 자료에 다양한 설명변수 축소방법을 적용하여, 가장 적은 수의 설명변수를 가지고 가장 높은 정확도를 제공하여 주는 설명변수 축소방법을 구하는 실증적인 연구를 시행하였다. 이러한 실험결과, 신경망의 민감도 분석을 이용하여 변수를 축소하고, 그 축소된 변수를 이용하여 의사결정나무 분석 모델을 생성하는 경우가 가장 효율적인 설명변수 축소방법임을 알 수 있었다.

  • PDF

로지스틱 회귀분석과 의사결정나무 분석을 이용한 일 대도시 주민의 우울 예측요인 비교 연구 (Comparative Analysis of Predictors of Depression for Residents in a Metropolitan City using Logistic Regression and Decision Making Tree)

  • 김수진;김보영
    • 한국콘텐츠학회논문지
    • /
    • 제13권12호
    • /
    • pp.829-839
    • /
    • 2013
  • 본 연구는 로지스틱 회귀분석과 의사결정나무 분석을 활용하여 일 대도시 주민의 우울에 영향을 주는 요인을 예측하고 비교하고자 시도된 서술적 조사연구이다. 연구대상은 20세에서 65세 미만의 일 대도시 주민 462명이었다. 자료 수집은 2011년 10월 7일부터 10월 21일까지이었으며, 자료 분석은 SPSS 18.0 프로그램을 이용하여 빈도, 백분율, 평균과 표준편차 및 ${\chi}^2$-test, t-test, 로지스틱 회귀분석, roc curve, 의사결정나무 분석으로 분석하였다. 본 연구 결과, 로지스틱 회귀분석과 의사결정나무 분석에서 공통적으로 나타난 우울 예측요인은 사회부적응, 주관적 신체증상 및 가족 지지이었다. 로지스틱 회귀분석에서 특이도 93.8%, 민감도 42.5%이었고, 본 연구의 모형 적합도를 roc curve 검증 한 결과 AUC=.84으로 본 연구 모형은 적합(p=<.001)하다고 할 수 있다. 우울예측에 대한 의사결정나무 분석은 분류에 대한 예측 정확도에서 특이도 98.3%, 민감도 20.8%이었고, 전체 분류 정확도는 로지스틱 회귀분석은 82.0%, 의사결정나무 분석은 80.5% 이었다. 본 연구 결과 민감성과 분류 정확도와 더 높게 나타난 로지스틱 회귀분석 방법이 지역 주민의 우울 예측 모형을 구축하는데 더 유용한 자료로 사용될 수 있으리라 사료된다.

의사결정나무의 분기법 변화가 예측력에 미치는 영향 (The impact of the change in the splitting method of decision trees on the prediction power)

  • 장영재
    • 응용통계연구
    • /
    • 제35권4호
    • /
    • pp.517-525
    • /
    • 2022
  • 빅데이터 시대에 이르러 다양한 데이터 마이닝 기법이 주요 분석 방법론으로 제안되었다. 복잡 다양한 데이터가 양산되면서 데이터 마이닝 기법은 데이터 과학의 토대를 이루는 방법으로 부각되었다. 본고에서는 해석의 유용성과 예측력 향상의 측면 모두에 초점을 맞추어 다양한 실험 연구를 시행하였다. 구체적인 모형으로는 의사결정나무를 선택하였는데, 이는 실무적 사용 빈도가 높은 방법으로서 활용 폭이 넓을 뿐만 아니라 이해가 쉽고 성능평가가 용이한 방법론이기 때문이다. 의사결정나무모형을 대상으로 이 모형의 구조를 크게 변형시키지 않으면서도 예측력 향상의 목적을 이룰 수 있는 방법을 살펴보았으며 분기변수의 선택 방법이 모형의 성능에 미치는 영향을 분석하였다. 이 효과를 측정하기 위해서 다양한 모의실험 모델을 생성하고 분기법의 변화에 따른 예측력을 비교하였다. 비선형성을 지니면서 단일 분할을 통해서 하위 집합으로 명확하게 구분하기 어려운 복잡한 데이터의 경우에는 선형결합 분기방법이 예측력 제고에 도움을 주는 것으로 나타났다.

데이터마이닝을 이용한 국민연금 부정수급 예측모형 개발 - 손해배상금 불성실 신고를 대상으로 - (An Application of Data-Mining Tool in Fraud Pension Payment Prediction)

  • 차경엽
    • Communications for Statistical Applications and Methods
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2010
  • 최근 사회복지분야에서 부정수급, 횡령 등이 빈번히 발생함에 따라 비리를 방지하기 위한 체계적인 관리 방안이 요구되고 있다. 데이터마이닝은 다수의 이해관계자와 많은 예산이 투입되는 사업을 관리하는데 효과적인 방법이다. 본 연구는 국민연금의 부정 수급자 관리방안으로 데이터마이닝을 이용한 예측모형을 개발하였다. 분석결과, 수급자의 급여, 연금 가입, 사고내역 정보가 부정수급의 특성 요인으로 나타났으며 이를 의사결정나무 모형, 로지스틱 회귀모형, 인공신경망 모형에 적용한 결과 의사결정나무 모형의 예측력이 가장 우수한 것으로 분석되었다.

데이터마이닝 기법을 활용한 맞춤형 고혈압 사후관리 모형 개발 (A Development of a Tailored Follow up Management Model Using the Data Mining Technique on Hypertension)

  • 박일수;용왕식;김유미;강성홍;한준태
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.639-647
    • /
    • 2008
  • 본 연구는 국민건강보험공단의 건강검진데이터, 자격 및 보험료 그리고 진료비 데이터를 활용하여 고혈압 관리를 위한 맞춤형 고혈압 사후관리모형(고혈압 진료예측모형 및 고혈압 진료순응도세분화모형)을 개발하고자 하였다. 모형 개발에는 데이터마이닝의 로지스틱 회귀모형, 의사결정나무 그리고 앙상블 모형을 활용하였다. 고혈압 진료예측모형에서는 3가지 모형 중 로지스틱 회귀모형이 가장 우수한 모형으로 채택되었으며, 고혈압 진료순응도세분화모형은 의사결정나무모형을 통해 개발되었다. 본 연구는 전국 규모의 수년간 축적된 자료를 데이터마이닝을 활용함으로써 고혈압의 진료 및 진료순응도에 이르는 고혈압 사후관리 프로세스 전반에 걸친 결과를 도출함으로써 우리나라 고혈압 사후관리체계 구축에 기여할 것으로 사료된다.

의사결정나무 기법을 활용한 백화점의 고객세분화 사례연구 (A Case Study on segmentation of Department Store using Decision Tree Analysis)

  • 채경희;김상철
    • 유통과학연구
    • /
    • 제8권1호
    • /
    • pp.13-19
    • /
    • 2010
  • 기업에서는 마케팅 비용대비 효과를 극대화하기 위하여, 고객을 세분한 후, 목표고객을 선별하여 해당 고객에 적절한 캠페인을 실시하고 있다. 특히 고객세분화 방법으로 통계 모형을 비롯하여 데이터마이닝 방법 등 다양한 방법들이 활용되고 있다. 그 중에서도 데이터마이닝은 1990년대 초에 도입되어 다양한 경영 문제를 해결하고 있다. 본 논문에서는 이와 같은 고객세분화에 활용되고 있는 데이터마이닝 방법에 대해 살펴본 후, 실제 백화점 사례를 기반으로 고객세분화에 주로 활용되고 있는 의사결정나무 분석 방법의 효과 및 장단점에 대해 논의해보고자 한다.

  • PDF

머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구

  • 윤양현;김태경;김수영;박용균
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2021년도 추계학술대회
    • /
    • pp.185-187
    • /
    • 2021
  • 관리종목 지정 제도는 상장 기업 내 기업의 부실화를 경고하여 기업에게는 회생 기회를 주고, 투자자들에게는 투자 위험을 경고하기 위한 시장규제 제도이다. 본 연구는 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 하여 관리종목 지정 예측에 대한 연구를 진행하였다. 분석에 쓰인 분석 방법은 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 소프트 보팅, 랜덤 포레스트, LightGBM이며 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높았다.

  • PDF

데이터마이닝기법상에서 적합된 예측모형의 평가 -4개분류예측모형의 오분류율 및 훈련시간 비교평가 중심으로 (Evaluations of predicted models fitted for data mining - comparisons of classification accuracy and training time for 4 algorithms)

  • 이상복
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.113-124
    • /
    • 2001
  • 의사결정나무모형 가운데 하나인 CHAID, 로지스틱 회귀모형, 이들을 이용한 각각의 베깅모형 등 4가지 예측분류모형에 대한 오분류율과 훈련시간을 표본크기별로 계산하고, 이들 모형에 대한 모의실험 비교를 통하여 주어진 알고리즘들의 효율성을 평가하였다. 베깅 의사결정나무모형은 오분류율은 낮았으나 상대적으로 훈련시간이 가장 길었다.

  • PDF