본 연구는 영화산업의 가치사슬단계에 따라 각 단계에서 고려할 수 있는 변인을 활용하여 제작/투자, 배급, 상영단계별 모형을 구성하였다. 모형의 예측력을 높이기 위해 회귀분석으로 유의미한 변인을 도출하여 모형을 추가로 설정하였다. 주어진 변인을 바탕으로 기계학습 분석방법인 인공신경망과 의사결정나무 분석방법 간의 예측력 차이를 비교하였다. 분석 결과, 제작/투자 모형과 배급 모형에서 모든 변인을 투입했을 때는 인공신경망의 정확도가 의사결정나무보다 높았으나, 회귀분석결과에 따라 선정된 변인을 투입하였을 때는 의사결정나무의 정확도가 더 높았다. 상영 모형에서는 회귀분석결과의 반영여부와 관계없이 인공신경망의 정확도가 의사결정나무의 정확도보다 높게 나타났다. 본 논문은 영화흥행 예측연구에 기계학습기법을 적용하여 예측성과가 향상됨을 확인하였다는데 의의가 있다. 선형회귀분석 결과를 기계학습기법에 반영함으로써 기존의 선형적 분석방법의 한계를 극복하고자 하였다.
Journal of the Korean Data and Information Science Society
/
제20권1호
/
pp.179-190
/
2009
금융 산업에서, 의사결정나무 분석은 분류분석을 위해서 널리 사용되는 분석기법이다. 그러나 금융 산업에서 실제로 의사결정나무 분석을 적용할 때, 발생하는 문제점 중 하나는 설명변수의 수가 너무 많다는 점이다. 따라서 모형의 결과에 별 영향을 미치지 않으면서 설명변수의 수를 줄이는 효과적인 방법을 연구할 필요가 있다. 본 연구에서는 의사결정 나무 분석에서 모형의 정확성에 근거한 최선의 변수 선택 방법을 구하기 위하여 다양한 변수 선택방법들을 비교 분석 하였다. 이를 위하여 본 연구에서는 한 보험회사의 연금 보험 상품 자료에 다양한 설명변수 축소방법을 적용하여, 가장 적은 수의 설명변수를 가지고 가장 높은 정확도를 제공하여 주는 설명변수 축소방법을 구하는 실증적인 연구를 시행하였다. 이러한 실험결과, 신경망의 민감도 분석을 이용하여 변수를 축소하고, 그 축소된 변수를 이용하여 의사결정나무 분석 모델을 생성하는 경우가 가장 효율적인 설명변수 축소방법임을 알 수 있었다.
본 연구는 로지스틱 회귀분석과 의사결정나무 분석을 활용하여 일 대도시 주민의 우울에 영향을 주는 요인을 예측하고 비교하고자 시도된 서술적 조사연구이다. 연구대상은 20세에서 65세 미만의 일 대도시 주민 462명이었다. 자료 수집은 2011년 10월 7일부터 10월 21일까지이었으며, 자료 분석은 SPSS 18.0 프로그램을 이용하여 빈도, 백분율, 평균과 표준편차 및 ${\chi}^2$-test, t-test, 로지스틱 회귀분석, roc curve, 의사결정나무 분석으로 분석하였다. 본 연구 결과, 로지스틱 회귀분석과 의사결정나무 분석에서 공통적으로 나타난 우울 예측요인은 사회부적응, 주관적 신체증상 및 가족 지지이었다. 로지스틱 회귀분석에서 특이도 93.8%, 민감도 42.5%이었고, 본 연구의 모형 적합도를 roc curve 검증 한 결과 AUC=.84으로 본 연구 모형은 적합(p=<.001)하다고 할 수 있다. 우울예측에 대한 의사결정나무 분석은 분류에 대한 예측 정확도에서 특이도 98.3%, 민감도 20.8%이었고, 전체 분류 정확도는 로지스틱 회귀분석은 82.0%, 의사결정나무 분석은 80.5% 이었다. 본 연구 결과 민감성과 분류 정확도와 더 높게 나타난 로지스틱 회귀분석 방법이 지역 주민의 우울 예측 모형을 구축하는데 더 유용한 자료로 사용될 수 있으리라 사료된다.
빅데이터 시대에 이르러 다양한 데이터 마이닝 기법이 주요 분석 방법론으로 제안되었다. 복잡 다양한 데이터가 양산되면서 데이터 마이닝 기법은 데이터 과학의 토대를 이루는 방법으로 부각되었다. 본고에서는 해석의 유용성과 예측력 향상의 측면 모두에 초점을 맞추어 다양한 실험 연구를 시행하였다. 구체적인 모형으로는 의사결정나무를 선택하였는데, 이는 실무적 사용 빈도가 높은 방법으로서 활용 폭이 넓을 뿐만 아니라 이해가 쉽고 성능평가가 용이한 방법론이기 때문이다. 의사결정나무모형을 대상으로 이 모형의 구조를 크게 변형시키지 않으면서도 예측력 향상의 목적을 이룰 수 있는 방법을 살펴보았으며 분기변수의 선택 방법이 모형의 성능에 미치는 영향을 분석하였다. 이 효과를 측정하기 위해서 다양한 모의실험 모델을 생성하고 분기법의 변화에 따른 예측력을 비교하였다. 비선형성을 지니면서 단일 분할을 통해서 하위 집합으로 명확하게 구분하기 어려운 복잡한 데이터의 경우에는 선형결합 분기방법이 예측력 제고에 도움을 주는 것으로 나타났다.
Communications for Statistical Applications and Methods
/
제17권1호
/
pp.1-8
/
2010
최근 사회복지분야에서 부정수급, 횡령 등이 빈번히 발생함에 따라 비리를 방지하기 위한 체계적인 관리 방안이 요구되고 있다. 데이터마이닝은 다수의 이해관계자와 많은 예산이 투입되는 사업을 관리하는데 효과적인 방법이다. 본 연구는 국민연금의 부정 수급자 관리방안으로 데이터마이닝을 이용한 예측모형을 개발하였다. 분석결과, 수급자의 급여, 연금 가입, 사고내역 정보가 부정수급의 특성 요인으로 나타났으며 이를 의사결정나무 모형, 로지스틱 회귀모형, 인공신경망 모형에 적용한 결과 의사결정나무 모형의 예측력이 가장 우수한 것으로 분석되었다.
본 연구는 국민건강보험공단의 건강검진데이터, 자격 및 보험료 그리고 진료비 데이터를 활용하여 고혈압 관리를 위한 맞춤형 고혈압 사후관리모형(고혈압 진료예측모형 및 고혈압 진료순응도세분화모형)을 개발하고자 하였다. 모형 개발에는 데이터마이닝의 로지스틱 회귀모형, 의사결정나무 그리고 앙상블 모형을 활용하였다. 고혈압 진료예측모형에서는 3가지 모형 중 로지스틱 회귀모형이 가장 우수한 모형으로 채택되었으며, 고혈압 진료순응도세분화모형은 의사결정나무모형을 통해 개발되었다. 본 연구는 전국 규모의 수년간 축적된 자료를 데이터마이닝을 활용함으로써 고혈압의 진료 및 진료순응도에 이르는 고혈압 사후관리 프로세스 전반에 걸친 결과를 도출함으로써 우리나라 고혈압 사후관리체계 구축에 기여할 것으로 사료된다.
기업에서는 마케팅 비용대비 효과를 극대화하기 위하여, 고객을 세분한 후, 목표고객을 선별하여 해당 고객에 적절한 캠페인을 실시하고 있다. 특히 고객세분화 방법으로 통계 모형을 비롯하여 데이터마이닝 방법 등 다양한 방법들이 활용되고 있다. 그 중에서도 데이터마이닝은 1990년대 초에 도입되어 다양한 경영 문제를 해결하고 있다. 본 논문에서는 이와 같은 고객세분화에 활용되고 있는 데이터마이닝 방법에 대해 살펴본 후, 실제 백화점 사례를 기반으로 고객세분화에 주로 활용되고 있는 의사결정나무 분석 방법의 효과 및 장단점에 대해 논의해보고자 한다.
관리종목 지정 제도는 상장 기업 내 기업의 부실화를 경고하여 기업에게는 회생 기회를 주고, 투자자들에게는 투자 위험을 경고하기 위한 시장규제 제도이다. 본 연구는 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 하여 관리종목 지정 예측에 대한 연구를 진행하였다. 분석에 쓰인 분석 방법은 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 소프트 보팅, 랜덤 포레스트, LightGBM이며 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높았다.
Journal of the Korean Data and Information Science Society
/
제12권2호
/
pp.113-124
/
2001
의사결정나무모형 가운데 하나인 CHAID, 로지스틱 회귀모형, 이들을 이용한 각각의 베깅모형 등 4가지 예측분류모형에 대한 오분류율과 훈련시간을 표본크기별로 계산하고, 이들 모형에 대한 모의실험 비교를 통하여 주어진 알고리즘들의 효율성을 평가하였다. 베깅 의사결정나무모형은 오분류율은 낮았으나 상대적으로 훈련시간이 가장 길었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.