Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1362-1365
/
2013
한국어 텍스트에 나타나는 오류어의 유형은 크게 단순 철자오류와 문맥 철자오류로 구분할 수 있다. 이중 문맥 철자오류는 문맥의 의미 통사적 관계를 고려해야만 해당 어휘의 오류 여부를 알 수 있는 오류로서 철자오류 중 교정 난도가 가장 높다. 문맥 철자오류의 유형은 발음 유상성에 따른 오류, 오타 오류, 문법 오류, 띄어쓰기 오류로 구분할 수 있다. 본 연구에서는 오타 오류에 의해 발생하는 문맥 철자오류를 어의 중의성 해소와 같은 문제로 보고 교정 어휘 쌍을 이용한 통계적 문맥 철자오류 교정 방법을 제안한다. 미리 생성한 교정 어휘 쌍을 대상으로 교정 어휘 쌍의 각 어휘와 주변 문맥 간 의미적 연관성을 통계적으로 측정하여 문맥 철자오류를 검색하고 교정한다. 제안한 방법을 적용한 결과 3개의 교정 어휘 쌍 모두 90%를 넘는 정확도를 보였다.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.289-292
/
2002
국어에서 wh-단어가 포함된 의문사 의문문과 부정사 의문문은 통사적으로 같은 구조를 가지지만 의미적으로는 중의 관계에 있다. 그러나 두 의문문은 문장으로 발화될 때 음성적으로 서로 다른 여러 가지 운율 특징의 차이를 보여줌으로써, 발화 차원에서는 더 이상 중의 관계를 유지하지 않는다. 본고에서는 이러한 중의성의 해소는 두 의문문의 초점이 달리 실현되기 때문이라고 본다. 기존의 연구에서는 두 가지 의문문의 억양 연구를 초점의 작용 범위와 문말 억양의 차이, 강세구 형성의 유형을 중심으로 고찰하였다 .그리고 의문사와 부정사의 의미는, 이에 후행하는 서술어와 형성하는 강세구 유형에서 우선적으로 그 의미가 구분될 수 있다고 보았다. 그러나, 본고에서는 국어의 wh-단어가 초점으로서 작용하는 운율적 돋들림을 좀더 다양한 환경에서 실험하였다. 그리고 의문사${\cdot}$부정사와 후행하는 언어단위의 강세구 형성(accentual phrasing) 유형, 의문사${\cdot}$부정사 의문문 전체 문장 억양의 실현 양상, wh-단어 자체의 음의 높낮이(pitch contour) 실현 유형, 문말 억양(boundary tone)에서 음의 높낮이를 대상으로 분석하였다.
Word Sense Disambiguation(WSD) is one of the most difficult problem in Korean information processing. We propose a WSD model with the capability to filter semantic information using the specific characteristics in dictionary dictions, and nth added information, useful to sense determination, such as statistical, distance and case information. we propose a model, which can resolve the issues resulting from the scarcity of semantic information data based on the word hierarchy system (thesaurus) developed by Ulsan University's UOU Word Intelligent Network, a dictionary-based toxicological database. Among the WSD models elaborated by this study, the one using statistical information, distance and case information along with the thesaurus (hereinafter referred to as 'SDJ-X model') performed the best. In an experiment conducted on the sense-tagged corpus consisting of 1,500,000 eojeols, provided by the Sejong project, the SDJ-X model recorded improvements over the maximum frequency word sense determination (maximum frequency determination, MFC, accuracy baseline) of $18.87\%$ ($21.73\%$ for nouns and inter-eojeot distance weights by $10.49\%$ ($8.84\%$ for nouns, $11.51\%$ for verbs). Finally, the accuracy level of the SDJ-X model was higher than that recorded by the model using only statistical information, distance and case information, without the thesaurus by a margin of $6.12\%$ ($5.29\%$ for nouns, $6.64\%$ for verbs).
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.175-182
/
2001
본 논문은 사전에 기반한 질의변환 교차언어 문서검색에서, 대역어 중의성 문제를 해결하기 위한, 질의어 가중치 부여 및 구조화 방법을 제안한다. 제안하는 방법의 질의 변환 과정은 다음의 세 단계로 이루어진다. 첫째, 대역어 클러스터링을 통해 먼저 질의어 단어의 적합한 의미를 결정짓고, 둘째, 문맥정보와 지역정보를 이용하여 후보 대역어들간의 상호관계를 분석하며, 셋째, 각 후보 대역어들을 연결하여, 후보 질의어를 만들고 각각에 가중치를 부여하여 weighted Boolean 질의어로 생성하게 된다. 이를 통해, 단순하고 경제적이지만, 높은 성능을 낼 수 있는 사전에 의한 질의변환 교차언어 문서검색 방법을 제시하고자 한다.
Annual Conference on Human and Language Technology
/
2007.10a
/
pp.261-268
/
2007
본 논문에서는 세종전자사전의 정보를 활용하여 논항 결합의 정확도를 향상시키는 한국어 구문분석 모델을 제안한다. 구문분석 과정에서 노드간의 결합 가능성을 계산할 때, 세종전자사전 동사사전의 격틀 정보, 논항 제약 정보와 명사사전의 의미부류 정보를 활용하여 가산점을 부여하여 사전의 내용과 일치하는 결합이 선호되도록 하였다. 이 과정에서 구조적 오류를 해결할 수 있었고, 결합에 참여하는 동사와 명사의 의미 중의성도 해소할 수 있었다. 평균 13어절 길이의 실험용 문장 50개를 대상으로 실험한 결과, 35% 정도의 오류 감소 효과를 볼 수 있었다. 또한 구문분석 결과 정보를, 전자 사전에 기술된 정보의 완결성을 시험하고 보완하는 데에도 활용하였다.
Many important terminologies in biomedical text are expressed as abbreviations or acronyms. We newly suggest a semantic link topic model based on the concepts of topic and dependency link to disambiguate biomedical abbreviations and cluster long form variants of abbreviations which refer to the same senses. This model is a generative model inspired by the latent Dirichlet allocation (LDA) topic model, in which each document is viewed as a mixture of topics, with each topic characterized by a distribution over words. Thus, words of a document are generated from a hidden topic structure of a document and the topic structure is inferred from observable word sequences of document collections. In this study, we allow two distinct word generation to incorporate semantic dependencies between words, particularly between expansions (long forms) of abbreviations and their sentential co-occurring words. Besides topic information, the semantic dependency between words is defined as a link and a new random parameter for the link presence is assigned to each word. As a result, the most probable expansions with respect to abbreviations of a given abstract are decided by word-topic distribution, document-topic distribution, and word-link distribution estimated from document collection though the semantic dependency link topic model. The abstracts retrieved from the MEDLINE Entrez interface by the query relating 22 abbreviations and their 186 expansions were used as a data set. The link topic model correctly predicted expansions of abbreviations with the accuracy of 98.30%.
This study proposes a Word Sense Disambiguation (WSD) algorithm, based on concept learning with special emphasis on statistically meaningful lowest frequency words. Previous works on WSD typically make use of frequency of collocation and its probability. Such probability based WSD approaches tend to ignore the lowest frequency words which could be meaningful in the context. In this paper, we show an algorithm to extract and make use of the meaningful lowest frequency words in WSD. Learning method is adopted from the Find-Specific algorithm of Mitchell (1997), according to which the search proceeds from the specific predefined hypothetical spaces to the general ones. In our model, this algorithm is used to find contexts with the most specific classifiers and then moves to the more general ones. We build up small seed data and apply those data to the relatively large test data. Following the algorithm in Yarowsky (1995), the classified test data are exhaustively included in the seed data, thus expanding the seed data. However, this might result in lots of noise in the seed data. Thus we introduce the 'maximum a posterior hypothesis' based on the Bayes' assumption to validate the noise status of the new seed data. We use the Naive Bayes Classifier and prove that the application of Find-Specific algorithm enhances the correctness of WSD.
Kim Byoung-Soo;Lee Yong-Hun;Na Seung-Hoon;Kim Jun-Gi;Lee Jong-Hyeok
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.4-6
/
2006
본 논문은 자연언어처리에서 문장의 서술어와 그 서술어가 가지는 명사 논항들 사이의 문법관계를 의미 관계로 사상하는 즉 논항이 서술어에 대해 가지는 역할을 정하는 문제를 다루고 있다. 의미역 결정은 단어의 의미 중의성 해소와 함께 자연언어의 의미 분석의 핵심 문제 중 하나이며 반드시 해결해야 하는 매우 중요한 문제 중 하나이다. 본 연구에서는 언어학적으로 유용한 자원인 세종전자사전을 이용하여 용언격틀사전을 구축하고 격틀 선택 방법으로 의미역을 결정한 후. 결정된 의미역들에 대한 확률 정보를 확률 모델에 적용하여 반복적으로 학습하는 부트스트래핑(Bootstrapping) 알고리즘을 사용하였다. 실험 결과, 기본 모델에 대해 10% 정도의 성능 향상을 보였다.
An, Hyung-Keun;Lee, Won-Hee;An, Dong-Un;Chung, Sung-Jong
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.7-10
/
2006
웹 환경이 일반화되고 웹을 통해 획득할 수 있는 정보가 다양하고 풍부하다. 이 다양하고 풍부한 정보는 유익한 정보 뿐만 아니라 청소년들을 비롯한 사회적으로 보호를 받아야 할 웹 이용자들의 정신건강을 해치는 정보들도 다수 포함되고 있어 사회적 문제가 되고 있다. 본 연구에서는 웹 문서를 필터링하는 수단으로 공기정보를 포함하고 있는 유해어 사전을 활용한다. 유해어 사전 구축은 단순히 유해어 리스트만으로 사전을 구축하지 않고, 유해어 주위의 공기 단어의 정보를 포함시킴으로써 유해어의 중의성에 의한 오분류를 해소하고자 하였다. 즉, 유해어 후보가 1개 이상의 의미를 가지며 각 의미가 유해 정도가 다를 때, 유해어 후보의 등급을 결정하기 위하여 해당 유해어와 같은 문장 혹은 같은 문서에 출현하는 다른 단어 정보를 활용한다. 이렇게 함으로써 문서의 유해 등급을 결정하게 된다.
Web based entity linking cannot be applied in tweet entity linking because twitter documents are shorter in comparison to web documents. Therefore, tweet entity linking uses the information of users or groups. However, data sparseness problem is occurred due to the users with the inadequate number of twitter experience data; in addition, a negative impact on the accuracy of the linking result for users is possible when using the information of unrelated groups. To solve the data sparseness problem, we consider three features including the meanings from single tweets, the users' own tweet set and the sets of other users' tweets. Furthermore, we improve the performance and the accuracy of the tweet entity linking by assigning a weight to the information of users with a high similarity. Through a comparative experiment using actual twitter data, we verify that the proposed tweet entity linking has higher performance and accuracy than existing methods, and has a correlation with solving the data sparseness problem and improved linking accuracy for use of information of high similarity users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.