• Title/Summary/Keyword: 의미 자질

Search Result 213, Processing Time 0.031 seconds

Korean Semantic Role Labeling Using Domain Adaptation Technique (도메인 적응 기술을 이용한 한국어 의미역 인식)

  • Lim, Soojong;Bae, Yongjin;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.56-60
    • /
    • 2014
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.

  • PDF

A Korean Document Sentiment Classification System based on Semantic Properties of Sentiment Words (감정 단어의 의미적 특성을 반영한 한국어 문서 감정분류 시스템)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper proposes how to improve performance of the Korean document sentiment-classification system using semantic properties of the sentiment words. A sentiment word means a word with sentiment, and sentiment features are defined by a set of the sentiment words which are important lexical resource for the sentiment classification. Sentiment feature represents different sentiment intensity in general field and in specific domain. In general field, we can estimate the sentiment intensity using a snippet from a search engine, while in specific domain, training data can be used for this estimation. When the sentiment intensity of the sentiment features are estimated, it is called semantic orientation and is used to estimate the sentiment intensity of the sentences in the text documents. After estimating sentiment intensity of the sentences, we apply that to the weights of sentiment features. In this paper, we evaluate our system in three different cases such as general, domain-specific, and general/domain-specific semantic orientation using support vector machine. Our experimental results show the improved performance in all cases, and, especially in general/domain-specific semantic orientation, our proposed method performs 3.1% better than a baseline system indexed by only content words.

Discriminating Meaningful Tables Using Visual Features (시각 자질을 이용한 의미 있는 테이블 검출)

  • Lee, Jae-An;Park, Seong-Bae;Son, Jeong-Woo;Lee, Sang-Jo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1332-1335
    • /
    • 2009
  • 웹 상에서의 정보추출은 방대한 데이터를 기반으로 널리 사용되고 있다. 테이블은 웹 페이지에서 요약된 정보를 보여주는 유용한 수단이기 때문에 테이블로부터의 정보추출은 일반적인 웹 데이터의 정보추출에 비해 중요하다. 하지만 웹 페이지에 나타난 테이블은 유의미한 정보를 가지는 의미 있는 테이블과 웹 페이지의 형태의 보정을 위한 장식 테이블로 나누어진다. 따라서 웹 페이지에서 의미 있는 테이블을 구분하고 정보를 검출하는 것은 웹 상에 나타난 정보를 활용하기 위한 중요한 단계이다. 본 논문은 웹 페이지에 나타난 테이블들 중 유의미한 정보를 내포하고 있는 의미 있는 테이블을 검출할 수 있는 방법을 제안한다. 이를 위해 본 논문에서는 브라우저를 통해 보여지는 테이블의 위치적 중요도를 반영하는 새로운 자질을 정의하고, 이를 기존 자질과 결합하여 활용함으로써 시각 자질의 유용성을 평가한다. 실험을 통해 본 논문에서 제안한 방법이 기존 방법들에 비해 우수한 성능을 보임을 알 수 있었다.

Multiple Semantic Role Labeling Problems Solving using CRFs (CRF를 이용한 복수 의미역 문제 해결)

  • Park, Tae-Ho;Cha, Jeong-Won
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.276-279
    • /
    • 2016
  • 의미역 결정에서 하나의 의미 논항이 둘 이상의 의미역을 가지는 경우는 복수의 레이블을 할당하기 때문에 어려운 문제이다. 본 논문은 복수의 의미역을 가지는 항의 의미역 결정을 위한 새로운 자질을 제안한다. 복수의 의미역을 결정하기 위해서 체언보다 선행되어 나타나는 용언에 대한 자질을 추가하였다. 또한 문장의 용언에 따라 의미역을 결정하기 위해서 문장 내의 용언 수만큼 각각에 용언에 대한 의미역을 결정할 수 있도록 반복적으로 레이블링하는 방법을 제시하였다. 본 논문의 실험 결과로 제안한 방법은 74.90%의 성능(F1)을 보였다.

  • PDF

Multiple Semantic Role Labeling Problems Solving using CRFs (CRF를 이용한 복수 의미역 문제 해결)

  • Park, Tae-Ho;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.276-279
    • /
    • 2016
  • 의미역 결정에서 하나의 의미 논항이 둘 이상의 의미역을 가지는 경우는 복수의 레이블을 할당하기 때문에 어려운 문제이다. 본 논문은 복수의 의미역을 가지는 항의 의미역 결정을 위한 새로운 자질을 제안한다. 복수의 의미역을 결정하기 위해서 체언보다 선행되어 나타나는 용언에 대한 자질을 추가하였다. 또한 문장의 용언에 따라 의미역을 결정하기 위해서 문장 내의 용언 수만큼 각각에 용언에 대한 의미역을 결정할 수 있도록 반복적으로 레이블링하는 방법을 제시하였다. 본 논문의 실험 결과로 제안한 방법은 74.90%의 성능(F1)을 보였다.

  • PDF

Dependency Relation Analysis using Case Frame for Encyclopedia Question-Answering System (백과사전 질의응답을 위한 격틀 기반 의존관계 분석)

  • Lim, Soo-Jong;Jung, Eui-Suk;Jang, Myoung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.167-172
    • /
    • 2004
  • 백과사전에서 정답을 찾기 위한 정보 중의 하나로 구조분석 정보를 이용하기 위하여 의존 관계 분석을 통해 정확한 구조분석에 대한 연구를 하였다. 정답을 찾기 위한 대상이 되는 용언과 논항의 관계를 파악하기 위해 먼저 의존관계 분석의 모호성 정도를 줄이기 위해 문장을 구묶음으로 나누었고 나눠진 구묶음에서 중심어와 중심어에 해당하는 의미코드를 추출하였다. 이렇게 구분된 구묶음 간의 의존관계를 파악하기 위하여 주로 격틀과 의미코드에 의존하는 의미자질, 거리 자질, 격관계 자질, 절형태 자질을 이용하여 의존관계 모호성을 해소하였다. 백과사전의 특성상 생략되는 성분과 연속 동사 처리를 하여 보다 정확하게 백과사전 QA시스템에서 정답을 찾을 수 있는 정보를 제공하도록 하였다. 실험결과 동사구와 명사구의 의존관계는 89.43의 성능을 보였고 의존관계에 격을 부여한 경우는 78.40%의 정확율, 백과사전 후처리에 해당하는 복원은 68.23의 성능을 보인다.

  • PDF

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

Selecting Model of Head in Support Verb Constructions for Phrase-Pattern-based Korean-to-English Machine Translation (구 단위 패턴 기반 한영 기계 번역에서의 기능동사 구문의 중심어 선택 모델)

  • Kim, Hae-Gyung;Chae, Young-Soog;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.203-208
    • /
    • 1999
  • 한국어는 잉여성과 중의성의 범 언어적인 특징과 함께 다른 언어에 비해 주어의 생략이 두드러지며 어순이 자유롭기 때문에 구문 형식의 지배를 덜 받는다는 개별적인 특성을 지닌다. 이러한 특성으로 인해 기계번역의 패턴을 추출할 때 서로 유사 가능성이 있는 패턴에 대한 고려가 없이는 같은 의미의 서로 다른 여러 개의 패턴을 모두 하나의 패턴으로 처리하는 오류를 범할 위험이 있다. 본 연구에서 사용되는 구 단위 패턴은 동사구, 명사구, 형용사구 그리고 부사구를 중심으로 한국어 패턴, 패턴 대표 카테고리, 한국어 패턴의 중심어 및 제약조건 대역영어패턴 의미코드로 나뉜다. 범 언어적인 특성의 한국어와 영어간 격차를 해소하기 위해 각각의 명사에 의미코드를 사용하여 다중 언어기반 체계를 구축하였으며. 한국어의 개별적인 특성으로 인해 발생하는 문제를 해소하기 위해 중심어 부과 자질을 사용하였다. 중심어 부과 자질에 있어서, 특히 술어기능명사를 중심어로 하는 기능동사 '하-' 구문은 다른 동사 구문의 형식과는 달리 논항의 수와 형태를 동사가 아닌 명사가 수행하게 된다. 이러한 특징에 대한 변별적인 자질 부여는 구문의 형태-통사적 특징 뿐만이 아니라 의미적인 고유의 특성까지도 잘 뒷받침하면서 패턴 추출에 월등한 효율성을 제시할 수 있다. 향후 이에 대한 연구는 전반적인 기능동사 구문뿐만이 아니라 개별적인 특징을 보이는 모든 구문에 대한 연구로 확대되어 패턴 기반 기계번역의 패턴 추출에 기본적인 정보의 역할을 담당해야 할 것이다.

  • PDF

Emotion Classification of User's Utterance for a Dialogue System (대화 시스템을 위한 사용자 발화 문장의 감정 분류)

  • Kang, Sang-Woo;Park, Hong-Min;Seo, Jung-Yun
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.459-480
    • /
    • 2010
  • A dialogue system includes various morphological analyses for recognizing a user's intention from the user's utterances. However, a user can represent various intentions via emotional states in addition to morphological expressions. Thus, a user's emotion recognition can analyze a user's intention in various manners. This paper presents a new method to automatically recognize a user's emotion for a dialogue system. For general emotions, we define nine categories using a psychological approach. For an optimal feature set, we organize a combination of sentential, a priori, and context features. Then, we employ a support vector machine (SVM) that has been widely used in various learning tasks to automatically classify a user's emotions. The experiment results show that our method has a 62.8% F-measure, 15% higher than the reference system.

  • PDF

Named-entity Recognition Using Bidirectional LSTM CRFs (Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식)

  • Song, Chi-Yun;Yang, Sung-Min;Kang, Sangwoo
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF