연속된 일차원 실수로 이루어진 시계열 데이터는 데이터 마이닝이나 데이터 웨어하우징과 같은 다양한 데이터베이스 응용 분야에서 연구되어져 왔다. 그러나 최근의 복잡한 비즈니스 환경에서, 다차원 데이터 시퀀스(multidimensional data sequence : MDS)는 일차원 시계열 데이터와 더불어 그 중요성이 더해가고 있다. 다차원 데이터 시퀀스의 예로써, 비디오 스트림은 색상과 질감 등의 속성들로 이루어진 다차원 공간상에서 MDS로 나타낼 수 있다. 본 논문에서는 패턴 유사성 검색에서 사용되는 효과적인 유사성 척도를 제시한다. 하나의 MDS는 여러 개의 세그먼트(segment)로 나누어지며, 각 세그먼트는 다양한 의미적인 특징들로 표현된다. 유사성 척도는 이러한 세그먼트에 대해서 정의되는데 이 척도를 사용하여 어떤 주어진 질의 시퀀스에 대하여 무관한 세그먼트들은 검색 대상에서 일차적으로 제외된다. 데이터 시퀀스와 질의 시퀀스 모두 세그먼트 단위로 분할되며, 질의 처리는 전체 시퀀스의 모든 데이터를 검색하지 않고 데이터 세그먼트와 질의 세그먼트의 특징을 비교하는 것을 기초로 하여 수행된다.
본 논문에서는 휘도성분과 색차성분의 유사성을 이용하여 부호화 성능을 향상시키기 위한 방법을 제안한다. 하나의 영상을 구성하는 휘도성분과 색차성분은 유사성이 높아 그 유사성을 이용하여 부호화 효율을 높이는 것이 가능하다. 현재 CU(Coding Unit)를 압축할 때 화면 내 예측방법을 사용한다면, 색차성분의 화면 내 예측모드가 휘도성분의 정보를 이용하는 경우에 본 논문의 알고르듬을 적용한다. 색차성분이 휘도성분의 정보를 이용하는 경우에는 휘도성분과 색차성분 간 유사도가 높다는 것을 의미하기 때문에 휘도성분의 스캔방법을 기본으로 중요한 변환계수의 위치정보를 이용하여 색차성분의 스캔 방법을 적응적으로 결정한다. 현재 배포된 HEVC의 레퍼런스 소프트웨어인 HM 3.1을 이용하여 실험한 결과 색차성분에 대해 0.39%의 부호화 효율을 있음을 확인할 수 있었다.
인터넷이 보다 대중화되고 광범위해지면서 의미적 관계에 따라 정보를 저장하는 온톨로지 시스템이 미래의 지능적인 컴퓨터를 위한 적절한 수단으로 각광받고 있다. 하지만 온톨로지와 같은 메타 데이터를 사용한 방법은 그 사용 목적 또는 작성자의 개인적인 관점에 따라 다양한 이질적인(heterogeneous) 형태를 띠게 된다. 이러한 이질적인 정보들은 데이터가 다른 시스템에서 처리되는 것을 어렵게 한다. 정보의 상호운용성을 보장하기 위해서는 서로 다른 온톨로지 시스템간의 개체에 대한 유사도를 평가할 수 있어야 한다. 따라서 두 개의 다른 OWL 언어로 정의된 온톨로지 사이에서 두 개의 엔티티의 유사도를 측정하기 위한 새로운 유사도 척도(similarity measure)를 제안하였다. 이는 온톨로지 상의 이질적인 정보를 통합하는데 사용되며, 온톨로지 비교(comparison), 정렬(alignment), 매칭(matching) 그리고 병합(merging)의 기반이 되는 중요한 기법이다. 새로운 유사도 척도는 특정한 매핑 정보를 사용하지 않고 온톨로지 언어의 속성을 기반으로 하므로 OWL을 사용한 온톨로지 간의 유사도 검색에 곧바로 적용될 수 있는 장점을 지닌다.
VoIP는 인터넷 프로토콜(IP)를 이용하여 음성을 데이터 packet처럼 전송하는 것을 의미한다. 최근 VoIP 기술의 도입으로 기존 망 성능 관리에 대한 관심이 높아지고 있다. 보다 원활한 기술 구현을 위해서는 VoIP 트래픽에 대한 체계적인 분석과 위험성 검증을 할 수 있는 도구가 필요하다. 또한 기존의 트래픽 시뮬레이션 기법에서 실제 망에서의 자기유사성을 적용한 사례가 적다는 것 또한 본 연구가 행하여진 동기이다. 본 연구에서는 자기유사성을 반영하여 소량의 샘플을 갖고 전체 VoIP 망 트래픽을 생성할 수 있는 방법론을 개발하고자 시도하였다.
문장 또는 텍스트 유사도란 두 가지 문장의 유사한 정도를 나타내는 척도이다. 텍스트의 유사도를 측정하는 기법으로 자카드 유사도, 코사인 유사도, 유클리디언 유사도, 맨하탄 유사도 등과 같이 있다. 현재 코사인 유사도 기법을 가장 많이 사용하고 있으나 이는 문장에서 단어의 출현 여부와 빈도수에 따른 분석이기 때문에, 의미적 관계에 대한 분석이 부족하다. 이에 우리는 온톨로지를 이용하여 단어 간의 관계를 부여하고, 두 문장에서 공통으로 포함된 단어를 추출할 때 의미적 유사성을 포함함으로써 문장의 유사도에 분석의 효율을 향상하고자 한다.
본 논문에서는 비정형, 대용량의 비디오데이터의 특징기반 검색과 주석기반 검색을 통합하여 다양한 사용자의 의미검색을 지원하고, 유사성 질의를 지원하는 통합비디오정보시스템(Hybrid Video Information System : HVIS)을 제안한다. HVIS는 메타데이터 모델링을 위해 한편의 비디오를 비디오 다큐먼트, 시퀸스, 장면, 객체로 나누고 물리적인 비디오스트림을 위한 원시데이터계층(raw_data layer)과 주석기반 검색, 특징기반 검색, 유사성 검색을 지원하기 위한 메타데이터계층(meta_data layer)의 두 개의 계층을 가진 통합 계층지향 메타데이터모델(Two layered Hybrid Object-oriented Metadata Model : THOMM)과 이 모델을 기반으로 주석기반 질의, 특징기반 질의, 유사질의가 가능한 비디오질의언어 (Video Query Language)와 질의를 처리하기 위한 비디오질의처리기 (Video Query Processor : VQP)와 질의처리알고리즘을 제안한다. 특히 유사한 장면, 객체를 찾는 유사질의시 사용자의 관심을 고려한 유사성 정도를 나타내는 식을 제시한다. 제안된 시스템은 Visual C++, ActiveX와 ORACLE를 이용하여 구현되었다.
자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.
최근 자연어 처리 분야에서 단어의 모호성을 해소하기 위해서 다양한 기계 학습 방법이 적용되고 있다. 지도 학습에 사용되는 데이터는 정답을 부착하기 위해 많은 비용과 시간이 필요하므로 최근 연구들은 비지도 학습의 성능을 높이기 위한 노력을 지속적으로 시도하고 있다. 단어 모호성 해소(word sense disambiguation)를 위한 비지도 학습연구는 지식 기반(knowledge base)를 이용한 방법들이 주목받고 있다. 이 방법은 학습 데이터 없이 지식 기반의 정보을 이용하여 문장 내에서 모호성을 가지는 단어의 의미를 결정한다. 지식 기반을 이용한 방법에는 그래프 기반방식과 유사도 기반 방법이 대표적이다. 그래프 기반 방법은 모호성을 가지는 단어와 그 단어가 가지는 다양한 의미들의 집합 간의 모든 경로에 대한 의미 그래프를 구축한다는 장점이 있지만 불필요한 의미 경로가 추가되어 오류를 증가시킨다는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 그래프 구축을 위해 불필요한 간선들을 배제하면서 반복적으로 그래프를 재구축하는 모델을 제안한다. 또한, 구축된 의미 그래프에서 더욱 정확한 의미를 예측하기 위해 하이브리드 유사도 예측 모델을 적용한다. 또한 제안된 모델은 다국어 어휘 의미망 사전인 BabelNet을 사용하기 때문에 특정 언어뿐만 아니라 다양한 언어에도 적용 가능하다.
최근 정보기술의 급속한 발달로 기존 정보시스템의 확장을 위한 데이터베이스 재설계에 대한 사용자들의 요구에 직면해 있다. 그러나 기존 데이터베이스 시스템은 다중 서버에 분산되어 있거나, 규모가 방대하여 확장을 위한 재설계에 많은 비용을 지불하고 있다. 따라서 기존 데이터베이스에서 서브스키마들의 정보를 추출하고, 이들간의 유사성 분석을 통하여 의미충돌을 해결하는 통합 방법을 적용하고 있는데, 본 연구에서는 이를 지원하기 위한 서브스키마의 유사성 분석을 위한 시소러스의 활용 방안을 제시한다.
본 논문에서는 번역지원 시스템을 위한 유사예문 검객 알고리즘을 제안한다. 유사예문 검색이란 질의문에 대하여 구조적, 의미적으로 유사한 예문을 찾는 것으로 번역지원 시스템의 핵심 요소이다. 제안하는 알고리즘은 생물정보학 분야에서 두 단백질의 아미노산열의 유사성을 판별하기 위한 Needleman-Wunsch 알고리즘에 기반하고 있다. 표면정보만 이용하는 Needleman-Wunsch 알고리즘을 그대로 문장 비교에 적용하였을 경우 단어 굴절요소에 민감하여 의미적으로 유사한 문장을 발견하지 못할 가능성이 높다. 따라서 표면 정보 외에 단어의 표제어 정보를 추가적으로 이용한다. 또한 문장 구조의 유사성 정도를 반영하기 위해 품사 정보를 이용한다. 즉, 본 논문에서는 단어의 표면 정보. 표제어 정보, 품사 정보를 융합한 문장 비교 척도를 제안한다. 그리고 이 척도를 이용하여 유사 문장을 검색하고, 유사성에 기여하는 부분쌍을 파악하여 결과로 제시한다. 제안하는 알고리즘은 전기통신 분야의 데이터에 대해 매우 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.