• 제목/요약/키워드: 의미 유사성

검색결과 1,063건 처리시간 0.028초

유사어를 이용한 단어 의미 중의성 해결 (Word Sense Disambiguation using Semantically Similar Words)

  • 서희철;이호;백대호;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.304-309
    • /
    • 1999
  • 본 논문에서는 의미계층구조에 나타난 유사어 정보를 이용해서 단어 의미 중의성을 해결하고자 한다. 의미계층구조를 이용한 기존의 방법에서는 의미 벡터를 이용해서 단어 의미 중의성을 해결했다. 의미 벡터는 의미별 학습 자료에서 획득되는 것으로 유사어들의 공통적인 특징만을 이용하고, 유사어 개별 특징은 이용하지 않는다. 본 논문에서는 유사어 개별 특징을 이용하기 위해서 유사어 벡터를 이용해서 단어 의미 중의성을 해결한다. 유사어 벡터는 유사어별 학습 자료에서 획득되는 것으로, 유사어의 개별 정보를 가지고 있는 벡터이다. 세 개의 한국어 명사에 대한 실험 결과, 의미 벡터를 이용하는 것보다 유사어 벡터를 이용하는 경우에 평균 9.5%정도의 성능향상이 있었다.

  • PDF

순차 패턴을 이용한 XML문서의 유사성 계산 방법 분석 (Korea Information Science Society)

  • 이원철;이상민
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.232-234
    • /
    • 2004
  • XML 문서의 요소는 의미적인 정보와 트리기반의 구조적인 정보를 포함하고 있기 때문에 요소의 구조적인 유사성이 곧 XML 문서의 유사성으로 연구되어 왔다. 그러나 구조적이고 순차적인 유사성만을 고려한 순차패턴 유사성 검색 방법은 의미적인(sementic) 유사성을 제대로 반영을 할 수가 없다. 이것은 정보 검색에 있어 재현율(recall)을 낮을 수밖에 없는 원인을 제공한다. 따라서 본 논문에서는 기존에 사용되었던 순차패턴을 기반으로 한 유사성의 계산 방법과 각각의 연구 방법이 의미적인 유사성에 대하여 한계가 있음을 찾아보았다.

  • PDF

말 실수와 의미 및 음운 정보 처리: 실험식 유도 말실수의 분석

  • 고혜선;이정모
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.114-122
    • /
    • 1996
  • 그림자극의 명명에 있어서 이름의 의미유사성, 음운유사성, 그리고 처리부담(말속도, 기억 부담)이 말 실수 오류수와 명명 시간에 주는 영향을 알기 위해 2개의 실험이 실시되었다. 의미(유사/상이), 음운(유사/상이) 변인에 추가하여 실험 1에서는 말속도(330ms, 385ms, 770ms)의 변인이, 실험 2에서는 인지적 부담(높음/낮음)의 변인이 조작되었다. 두 실험의 결과, 의미유사성과 음운유사성, 그리고 인지적 처리 부담이 말 실수의 양과 그림자극 명명 시간이 증가시킴이 드러났다. '의미유사' 조건 및 '음운유사 조건'과 '의미-음운 모두 유사' 조건간의 말실수의 양의 차이는 말 산출 과정에서의 어휘 인출 과정에 대한 '독립적 2단계 모형'과 '활성화 상호작용 모형' 중 전자에 의해 더 잘 설명될 수 있음이 논의되었다.

  • PDF

시맨틱 프레임을 이용한 한국어 패러프레이즈 자동 평가 방법 (An Automatic Evaluation Metric for Korean Paraphrase via Semantic Frame)

  • 박한철;권가진;최호진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.761-764
    • /
    • 2014
  • 본 연구는 지능형 QA시스템과 관련한 연구에서, 자동 패러프레이즈 생성 시스템을 평가하는 새로운 방법을 제시한다. 기존의 패러프레이즈 생성 시스템의 자동 평가 방법은 참조할 수 있는 패러프레이즈 정보의 양이 크게 제한되어 있었으며, 원 문장의 콘텍스트(context)와 이에 의존하는 통사적 구조(syntactic structure) 및 의미적 구조의 유사성을 고려하지 않고, 단순 구/단어 수준의 의미 유사성을 기반으로 생성된 패러프레이즈를 평가하였다. 이러한 문제를 해결하기 위해 본 연구는 시맨틱 프레임(semantic frame)을 이용한 패러프레이즈 문장 평가 방법을 제시한다. 본 연구에서 제시하는 방법론은 문장의 콘텍스트를 표현하는 프레임과 이러한 프레임이 발생시키는 통사적, 의미적 구조의 유사성을 바탕으로 원 문장과 패러프레이즈 문장의 '의미 유사성', '어휘 형태 비 유사성'을 평가하는 방식이다.

의미적으로 확장된 문장 간 유사도를 이용한 한국어 텍스트 자동 요약 (Korean Text Automatic Summarization using Semantically Expanded Sentence Similarity)

  • 김희찬;이수원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.841-844
    • /
    • 2014
  • 텍스트 자동 요약은 수많은 텍스트 데이터를 처리함에 있어 중요한 연구 분야이다. 이중 추출요약은 현재 가장 많이 연구가 되고 있는 자동 요약 분야이다. 본 논문은 추출 요약의 선두 연구인 TextRank는 문장 간 유사도를 계산할 때 문장 내 단어 간의 의미적 유사성을 충분히 고려하지 못하였다. 본 연구에서는 의미적 유사성을 고려한 새로운 단어 간 유사도 측정 방법을 제안한다. 추출된 문장 간 유사도는 그래프로 표현되며, TextRank의 랭킹 알고리즘과 동일한 랭킹 알고리즘을 사용하여 실험적으로 평가하였다. 그 결과 문장 간 유사성을 고려할 때 단어의 의미적 요소를 충분히 고려하여 정보의 유실을 최소화하여야 한다는 것을 실험 결과로써 확인할 수 있었다.

GORank: Gene Ontology를 이용한 유전자 산물의 의미적 유사성 검색 (GORank: Semantic Similarity Search for Gene Products using Gene Ontology)

  • 김기성;유상원;김형주
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권7호
    • /
    • pp.682-692
    • /
    • 2006
  • 유사한 생물학적 특성을 가진 유전자 산물을 검색하는 것은 생물정보학 연구에 필수적인 기술이다. 현재 대부분의 생물학 데이타베이스에서 Gene Ontology의 용어를 사용하여 유전자 산물의 생물학적 특성을 기술하고 있다. 본 논문에서는 이런 유전자 산물의 주석 정보를 사용해 의미적으로 유사한 유전자 산물을 검색하는 방법을 제안한다. 이를 위해 우선 정보 이론에 기반한 유전자 산물간의 의미적 유사도를 정의하였다. 그리고 이 유사도를 이용한 의미적 유사성 검색 알고리즘을 제안하였다. 의미적 유사성 검색을 처리하기 위해 Fagin의 문턱값 알고리즘(threshold algorithm)을 다음과 같이 변형한 기법을 사용하였다. 우선 사용하는 유사도 함수가 단조 증가 성질을 갖지 않기 때문에 유사도 함수에 맞는 문턱값을 재정의 하였다. 또 역색인 리스트의 구조를 사용하여 중간 검색을 생략할 수 있는 클러스터 스키핑 기법과 역색인 리스트 액세스 순서를 제안하였다. 실제 GO와 주석 정보를 이용하여 성능 평가를 했으며 제안한 알고리즘은 효율적인 알고리즘임을 보였다.

시그니처 트리를 사용한 의미적 유사성 검색 기법 (Semantic Similarity Search using the Signature Tree)

  • 김기성;임동혁;김철한;김형주
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권6호
    • /
    • pp.546-553
    • /
    • 2007
  • 온톨로지의 활용이 늘어나면서 의미적 유사성 검색에 대한 관심이 높아지고 있다. 본 논문에서는 질의 객체와의 의미적 유사성이 높은 객체를 검색하는 최근접 질의 기법을 제안하였다. 의미적 유사성을 측정하는 유사성 함수로는 최적 대응값 방식의 유사도 함수를 사용하였으며 주석 정보에 대한 색인을 위해 시그니처 트리를 사용하였다. 시그니처 트리는 집합 유사성 검색에서 많이 사용되는 색인 구조로서 유사성 검색에 사용하기 위해서는 검색시 각 노드를 탐색하였을 때 발견할 수 있는 유사도의 최대값을 예측할 수 있어야 한다. 이에 본 논문에서는 최적 대응값 방식의 유사도 함수에 대한 예측 최대값 함수를 제안하고 올바른 예측 함수임을 증명하였다. 또한 시그니처 트리에 동일한 시그니처가 중복되어 저장되지 않도록 구조를 개선하였다. 이는 시그니처 트리의 크기를 감소시킬 뿐만 아니라 질의 성능 또한 향상시켜 주었다. 실험의 데이타로는 대용량 온톨로지와 주석 정보 데이타를 제공하는 Gene Ontology(GO)를 사용하였다. 실험에서는 제안한 방법의 성능 향상 외에도 페이지 크기와 노드 분할 방법이 의미적 유사성 질의 성능에 미치는 영향에 대해 알아보았다.

구문의미트리 비교기를 이용한 유사문서 판별기 (Discriminator of Similar Documents Using the Syntactic-Semantic Tree Comparator)

  • 강원석
    • 한국콘텐츠학회논문지
    • /
    • 제15권10호
    • /
    • pp.636-646
    • /
    • 2015
  • 정보사회에 문서 복제나 표절의 검출에 대한 필요성이 증대되고 있다. 그 필요성에 따라 많은 연구가 이루어지고 있으나 자연어 처리의 문제가 유사 문서 판별의 질 향상에 제약이 되었다. 최근 구문의미분석의 기술을 접목하여 유사문서 판별의 성능을 향상을 시도하였으나 구문의미분석의 결과인 구문의미트리를 비교하는 어려움이 있었다. 본 논문은 구문의미트리의 유사도를 계산하는 구문의미트리 비교기를 개발하고 이를 이용하여 유사문서를 판별하는 시스템을 설계, 구현한다. 본 시스템의 성능을 실험하기 위하여 휴먼 판별과 제안한 시스템의 판별과의 상관계수를 분석하였다. 실험결과, 구문의미트리 비교기를 이용한 유사문서 판별기의 성능을 검증할 수 있었다. 앞으로 문서 유형을 정의하고 각 유형에 맞는 판별 기법을 개발할 필요가 있다.

ARGUMENT STRUCTURE ALTERNATIONS IN ENGLISH AND KOREAN

  • 김미숙
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2001년도 학술대회 논문집
    • /
    • pp.59-73
    • /
    • 2001
  • 이 논문은 영어와 한국어에서 논 항구조의 교체를 허용하는 처소격 동사들의 통사구조와 의미를 비교 분석해 보려고 한다. 지금까지 연구가 논항구조의 교체를 허용하는 이런 동사들이 통사적 유사성에만 국한되어 연구가 되었을 뿐 여러 다른 통사적 형식에서 보여지는 차이점이나 논항 교체 동사들의 의미적 차이점과 같은 중요한 현상들에 대한 많은 연구가 되어지지 않았다. 따라서 첫 번째로 이 논문에서는 Pinker (1989)에 제시한 논항 교체 동사들의 의미적 분석을 구체적으로 소개하고, 이런 교체 동사들의 의미적 유사성과 차이점으로 구분한 Pinker의 의미분류들을 자세히 알아본다. 또한 Pinker가 교체동사들의 의미적 분류를 위해 사용한 통사적 기준인 논항 생략 (PP-omission test)을 소개한다. 두 번째로 영어의 논항 교체 동사들에 해당하는 한국어 동사들의 통사적 형태를 알아봄으로써 영어와 한국어에서의 통사적 유사성과 차이점을 알아본다. 세 번째로 영어와 한국어에서 나타나는 통사적 차이점의 설명을 위해 Pinker가제시한 의미 분류들을 수정한 새로운 분류를 제시한다 마지막으로 Jackendoff (1996)에서 제시된 의미적 설명이 영어의 논항 교체 동사에 해당하는 한국어 동사들의 통사적 형태들의 다양성을 설명할 수 있음을 보여준다

  • PDF

Word2vec 모델의 단어 임베딩 특성 연구 (On Characteristics of Word Embeddings by the Word2vec Model)

  • 강형석;양장훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.263-266
    • /
    • 2019
  • 단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.