• Title/Summary/Keyword: 의미 기반 정보 추출

Search Result 678, Processing Time 0.031 seconds

A Study on Improving Strategies of Itinerant Librarians' Job Environment at Small Libraries (작은도서관 순회사서 직무환경 개선방안 연구)

  • Chae, Hee-ra;Kim, You-seung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.71-94
    • /
    • 2022
  • While small libraries have steadily increased in quantity, parts of qualitative growth such as lack of manpower and poor operation have been pointed out as problems. Accordingly, with the aim of establishing a foundation for linkage and cooperation between public libraries and small libraries, the small library itinerant librarians project has been promoted since 2010, and its scale has been continuously expanding. However, the lack of manpower and poor operation still remain tasks to be solved, and the poor treatment and job environment of itinerant librarians have not improved. In this context, this study aims to examine the problems of small libraries and job problems experienced by itinerant librarians and to find ways to improve the job environment of itinerant librarians based on this. Through the analysis of previous studies, small libraries and net companies were investigated, and in-depth interviews were conducted with participants related to itinerant librarians and small libraries. Through interview data analysis, a total of 17 meaning topics were extracted, including 'lack of work authority', 'lack of work manual', 'lack of communication, community', 'lack of integrated operating system', 'poor treatment and working environment', 'malicious user', and 'lack of belonging'. Based on this, four improvement measures were proposed, including the improvement of the job authority and standard regulations of itinerant librarians, the establishment of a community organization, job security guarantees, and job education reinforcement.

Information types and characteristics within the Wireless Emergency Alert in COVID-19: Focusing on Wireless Emergency Alerts in Seoul (코로나 19 하에서 재난문자 내의 정보유형 및 특성: 서울특별시 재난문자를 중심으로)

  • Yoon, Sungwook;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.45-68
    • /
    • 2022
  • The central and local governments of the Republic of Korea provided information necessary for disaster response through wireless emergency alerts (WEAs) in order to overcome the pandemic situation in which COVID-19 rapidly spreads. Among all channels for delivering disaster information, wireless emergency alert is the most efficient, and since it adopts the CBS(Cell Broadcast Service) method that broadcasts directly to the mobile phone, it has the advantage of being able to easily access disaster information through the mobile phone without the effort of searching. In this study, the characteristics of wireless emergency alerts sent to Seoul during the past year and one month (January 2020 to January 2021) were derived through various text mining methodologies, and various types of information contained in wireless emergency alerts were analyzed. In addition, it was confirmed through the population mobility by age in the districts of Seoul that what kind of influence it had on the movement behavior of people. After going through the process of classifying key words and information included in each character, text analysis was performed so that individual sent characters can be used as an analysis unit by applying a document cluster analysis technique based on the included words. The number of WEAs sent to the Seoul has grown dramatically since the spread of Covid-19. In January 2020, only 10 WEAs were sent to the Seoul, but the number of the WEAs increased 5 times in March, and 7.7 times over the previous months. Since the basic, regional local government were authorized to send wireless emergency alerts independently, the sending behavior of related to wireless emergency alerts are different for each local government. Although most of the basic local governments increased the transmission of WEAs as the number of confirmed cases of Covid-19 increases, the trend of the increase in WEAs according to the increase in the number of confirmed cases of Covid-19 was different by region. By using structured econometric model, the effect of disaster information included in wireless emergency alerts on population mobility was measured by dividing it into baseline effect and accumulating effect. Six types of disaster information, including date, order, online URL, symptom, location, normative guidance, were identified in WEAs and analyzed through econometric modelling. It was confirmed that the types of information that significantly change population mobility by age are different. Population mobility of people in their 60s and 70s decreased when wireless emergency alerts included information related to date and order. As date and order information is appeared in WEAs when they intend to give information about Covid-19 confirmed cases, these results show that the population mobility of higher ages decreased as they reacted to the messages reporting of confirmed cases of Covid-19. Online information (URL) decreased the population mobility of in their 20s, and information related to symptoms reduced the population mobility of people in their 30s. On the other hand, it was confirmed that normative words that including the meaning of encouraging compliance with quarantine policies did not cause significant changes in the population mobility of all ages. This means that only meaningful information which is useful for disaster response should be included in the wireless emergency alerts. Repeated sending of wireless emergency alerts reduces the magnitude of the impact of disaster information on population mobility. It proves indirectly that under the prolonged pandemic, people started to feel tired of getting repetitive WEAs with similar content and started to react less. In order to effectively use WEAs for quarantine and overcoming disaster situations, it is necessary to reduce the fatigue of the people who receive WEA by sending them only in necessary situations, and to raise awareness of WEAs.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.

RAUT: An end-to-end tool for automated parsing and uploading river cross-sectional survey in AutoCAD format to river information system for supporting HEC-RAS operation (하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발)

  • Kim, Kyungdong;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1339-1348
    • /
    • 2021
  • In accordance with the River Law, the basic river maintenance plan is established every 5-10 years with a considerable national budget for domestic rivers, and various river surveys such as the river section required for HEC-RAS simulation for flood level calculation are being conducted. However, river survey data are provided only in the form of a pdf report to the River Management Geographic Information System (RIMGIS), and the original data are distributedly owned by designers who performed the river maintenance plan in CAD format. It is a situation that the usability for other purposes is considerably lowered. In addition, when using surveyed CAD-type cross-sectional data for HEC-RAS, tools such as 'Dream' are used, but the reality is that time and cost are almost as close as manual work. In this study, RAUT (River Information Auto Upload Tool), a tool that can solve these problems, was developed. First, the RAUT tool attempted to automate the complicated steps of manually inputting CAD survey data and simulating the input data of the HEC-RAS one-dimensional model used in establishing the basic river plan in practice. Second, it is possible to directly read CAD survey data, which is river spatial information, and automatically upload it to the river spatial information DB based on the standard data model (ArcRiver), enabling the management of river survey data in the river maintenance plan at the national level. In other words, if RIMGIS uses a tool such as RAUT, it will be able to systematically manage national river survey data such as river section. The developed RAUT reads the river spatial information CAD data of the river maintenance master plan targeting the Jeju-do agar basin, builds it into a mySQL-based spatial DB, and automatically generates topographic data for HEC-RAS one-dimensional simulation from the built DB. A pilot process was implemented.

An Efficient Estimation of Place Brand Image Power Based on Text Mining Technology (텍스트마이닝 기반의 효율적인 장소 브랜드 이미지 강도 측정 방법)

  • Choi, Sukjae;Jeon, Jongshik;Subrata, Biswas;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.113-129
    • /
    • 2015
  • Location branding is a very important income making activity, by giving special meanings to a specific location while producing identity and communal value which are based around the understanding of a place's location branding concept methodology. Many other areas, such as marketing, architecture, and city construction, exert an influence creating an impressive brand image. A place brand which shows great recognition to both native people of S. Korea and foreigners creates significant economic effects. There has been research on creating a strategically and detailed place brand image, and the representative research has been carried out by Anholt who surveyed two million people from 50 different countries. However, the investigation, including survey research, required a great deal of effort from the workforce and required significant expense. As a result, there is a need to make more affordable, objective and effective research methods. The purpose of this paper is to find a way to measure the intensity of the image of the brand objective and at a low cost through text mining purposes. The proposed method extracts the keyword and the factors constructing the location brand image from the related web documents. In this way, we can measure the brand image intensity of the specific location. The performance of the proposed methodology was verified through comparison with Anholt's 50 city image consistency index ranking around the world. Four methods are applied to the test. First, RNADOM method artificially ranks the cities included in the experiment. HUMAN method firstly makes a questionnaire and selects 9 volunteers who are well acquainted with brand management and at the same time cities to evaluate. Then they are requested to rank the cities and compared with the Anholt's evaluation results. TM method applies the proposed method to evaluate the cities with all evaluation criteria. TM-LEARN, which is the extended method of TM, selects significant evaluation items from the items in every criterion. Then the method evaluates the cities with all selected evaluation criteria. RMSE is used to as a metric to compare the evaluation results. Experimental results suggested by this paper's methodology are as follows: Firstly, compared to the evaluation method that targets ordinary people, this method appeared to be more accurate. Secondly, compared to the traditional survey method, the time and the cost are much less because in this research we used automated means. Thirdly, this proposed methodology is very timely because it can be evaluated from time to time. Fourthly, compared to Anholt's method which evaluated only for an already specified city, this proposed methodology is applicable to any location. Finally, this proposed methodology has a relatively high objectivity because our research was conducted based on open source data. As a result, our city image evaluation text mining approach has found validity in terms of accuracy, cost-effectiveness, timeliness, scalability, and reliability. The proposed method provides managers with clear guidelines regarding brand management in public and private sectors. As public sectors such as local officers, the proposed method could be used to formulate strategies and enhance the image of their places in an efficient manner. Rather than conducting heavy questionnaires, the local officers could monitor the current place image very shortly a priori, than may make decisions to go over the formal place image test only if the evaluation results from the proposed method are not ordinary no matter what the results indicate opportunity or threat to the place. Moreover, with co-using the morphological analysis, extracting meaningful facets of place brand from text, sentiment analysis and more with the proposed method, marketing strategy planners or civil engineering professionals may obtain deeper and more abundant insights for better place rand images. In the future, a prototype system will be implemented to show the feasibility of the idea proposed in this paper.

Performance Comparison of Clustering using Discritization Algorithm (이산화 알고리즘을 이용한 계층적 클러스터링의 실험적 성능 평가)

  • Won, Jae Kang;Lee, Jeong Chan;Jung, Yong Gyu;Lee, Young Ho
    • Journal of Service Research and Studies
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2013
  • Datamining from the large data in the form of various techniques for obtaining information have been developed. In recent years one of the most sought areas of pattern recognition and machine learning method is created with most of existing learning algorithms based on categorical attributes to a rule or decision model. However, the real-world data, it may consist of numeric attributes in many cases. In addition it contains attributes with numerical values to the normal categorical attribute. In this case, therefore, it is required processes in order to use the data to learn an appropriate value for the type attribute. In this paper, the domain of the numeric attributes are divided into several segments using learning algorithm techniques of discritization. It is described Clustering with other data mining techniques. Large amount of first cluster with characteristics is similar records from the database into smaller groups that split multiple given finite patterns in the pattern space. It is close to each other of a set of patterns that together make up a bunch. Among the set without specifying a particular category in a given data by extracting a pattern. It will be described similar grouping of data clustering technique to classify the data.

  • PDF

A comparative study on the performance of Transformer-based models for Korean speech recognition (트랜스포머 기반 모델의 한국어 음성인식 성능 비교 연구)

  • Changhan Oh;Minseo Kim;Kiyoung Park;Hwajeon Song
    • Phonetics and Speech Sciences
    • /
    • v.16 no.3
    • /
    • pp.79-86
    • /
    • 2024
  • Transformer models have shown remarkable performance in extracting meaningful information from sequential input data such as text and images, and are gaining attention as end-to-end models for speech recognition. This study compared the performances of the Transformer speech recognition model and its enhanced versions, the Conformer and E-Branchformer, when applied to Korean speech recognition. Using Korean speech data from AIHub, we prepared a training set of approximately 7,500 hours and evaluated the models using the ESPnet toolkit. Additionally, we compared syllables and subwords as recognition units and analyzed the performance differences with changes in the number of tokens using Byte Pair Encoding. The results showed that the E-Branchformer achieved the best performance in Korean speech recognition and Conformer outperformed Transformer but degraded in performance for long utterances owing to cross-attention alignment errors. We aimed to determine the optimal settings by analyzing the performance changes with subword token adjustments. This study comprehensively evaluated model accuracy and processing speed to maximize the efficiency of Korean speech recognition. This is expected to contribute to the training of large-scale Korean speech recognition models and improve Conformer recognition errors. Future research should include additional experiments with diverse Korean speech datasets and enhance the recognition performance through structural improvements in the Conformer.

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

A Study on Kiosk Satisfaction Level Improvement: Focusing on Kano, Timko, and PCSI Methodology (키오스크 소비자의 만족수준 연구: Kano, Timko, PCSI 방법론을 중심으로)

  • Choi, Jaehoon;Kim, Pansoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.4
    • /
    • pp.193-204
    • /
    • 2022
  • This study analyzed the degree of influence of measurement and improvement of customer satisfaction level targeting kiosk users. In modern times, due to the development of technology and the improvement of the online environment, the probability that simple labor tasks will disappear after 10 years is close to 90%. Even in domestic research, it is predicted that 'simple labor jobs' will disappear due to the influence of advanced technology with a probability of about 36%. there is. In particular, as the demand for non-face-to-face services increases due to the Corona 19 virus, which is recently spreading globally, the trend of introducing kiosks has accelerated, and the global market will grow to 83.5 billion won in 2021, showing an average annual growth rate of 8.9%. there is. However, due to the unmanned nature of these kiosks, some consumers still have difficulties in using them, and consumers who are not familiar with the use of these technologies have a negative attitude towards service co-producers due to rejection of non-face-to-face services and anxiety about service errors. Lack of understanding leads to role conflicts between sales clerks and consumers, or inequality is being created in terms of service provision and generations accustomed to using technology. In addition, since kiosk is a representative technology-based self-service industry, if the user feels uncomfortable or requires additional labor, the overall service value decreases and the growth of the kiosk industry itself can be suppressed. It is important. Therefore, interviews were conducted on the main points of direct use with actual users centered on display color scheme, text size, device design, device size, internal UI (interface), amount of information, recognition sensor (barcode, NFC, etc.), Display brightness, self-event, and reaction speed items were extracted. Afterwards, using the questionnaire, the Kano model quality attribute classification of each expected evaluation item was carried out, and Timko's customer satisfaction coefficient, which can be calculated with accurate numerical values The PCSI Index analysis was additionally performed to determine the improvement priorities by finally classifying the improvement impact of the kiosk expected evaluation items through research. As a result, the impact of improvement appears in the order of internal UI (interface), text size, recognition sensor (barcode, NFC, etc.), reaction speed, self-event, display brightness, amount of information, device size, device design, and display color scheme. Through this, we intend to contribute to a comprehensive comparison of kiosk-based research in each field and to set the direction for improvement in the venture industry.