• Title/Summary/Keyword: 의미 기반 정보 추출

Search Result 678, Processing Time 0.032 seconds

Ontology-based Culture·Tourist Attraction Search Application (온톨로지 기반의 문화·관광지 검색 어플리케이션 구현)

  • Hwang, Tae-won;Seo, Jung-hee;Park, Hung-bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.772-774
    • /
    • 2017
  • Currently, there are many simple searches for local culture and tourism, but systematic information retrieval using ontology technology is weak. The keyword-based search, which is an existing search method, derives a search result that is different from a user's wanted intention. On the other hand, semantic search using ontology constructs shows the information related to the search term by creating a relation between words and words. Therefore, when tourists search for cultural and tourist attractions in the area, they provide information that includes meaning relevance in the search results. If the ontology provides information on the culture, sightseeing area, transportation, Can be more easily grasped. In this paper, we propose an ontology-based retrieval system based on culture and tourist sites utilizing public institutions database by using mobile application by extending search system which relied only on existing internal database to provide accurate and reliable information to users. This efficient structure of the ontology makes it possible to provide information suitable for the user quickly and accurately.

  • PDF

A Study on Information Systematization of Detail Drawings for Connectivity between BIM Libraries and Technical Contents based on Information Framework (BIM 라이브러리-기술콘텐츠 연계를 위한 정보프레임워크 기반의 정보 체계화 연구-부분상세를 중심으로)

  • Jo, Chan-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.54-60
    • /
    • 2016
  • Building information modeling (BIM) has the advantage of having been utilized for various scenarios through a single model. Although extracting 2D drawings from BIM is one of the advantages, there are many difficulties when utilized in practical work. Architectural detail drawings are an important factor for expressing interior finishing materials and complicated construction methods, as well as for cost estimations. However, creating detail drawings does not have a standard, and each design company establishes its own detail drawings, so it is hard to share or exchange information in the construction industry. Therefore, this study suggests a systemized method for making detail drawings, and explains how it can be utilized as back data for quantity take-off and construction expenses linked with BIM libraries.

Keyword-based networked knowledge map expressing content relevance between knowledge (지식 간 내용적 연관성을 표현하는 키워드 기반 네트워크형 지식지도 개발)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.119-134
    • /
    • 2018
  • A knowledge map as the taxonomy used in a knowledge repository should be structured to support and supplement knowledge activities of users who sequentially inquire and select knowledge for problem solving. The conventional knowledge map with a hierarchical structure has the advantage of systematically sorting out types and status of the knowledge to be managed, however it is not only irrelevant to knowledge user's process of cognition and utilization, but also incapable of supporting user's activity of querying and extracting knowledge. This study suggests a methodology for constructing a networked knowledge map that can support and reinforce the referential navigation, searching and selecting related and chained knowledge in term of contents, between knowledge. Regarding a keyword as the semantic information between knowledge, this research's networked knowledge map can be constructed by aggregating each set of knowledge links in an automated manner. Since a keyword has the meaning of representing contents of a document, documents with common keywords have a similarity in content, and therefore the keyword-based document networks plays the role of a map expressing interactions between related knowledge. In order to examine the feasibility of the proposed methodology, 50 research papers were randomly selected, and an exemplified networked knowledge map between them with content relevance was implemented using common keywords.

An Algorithm for Referential Integrity Relations Extraction using Similarity Comparison of RDB (유사성 비교를 통한 RDB의 참조 무결성 관계 추출 알고리즘)

  • Kim, Jang-Won;Jeong, Dong-Won;Kim, Jin-Hyung;Baik, Doo-Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.115-124
    • /
    • 2006
  • XML is rapidly becoming technologies for information exchange and representation. It causes many research issues such as semantic modeling methods, security, conversion far interoperability with other models, and so on. Especially, the most important issue for its practical application is how to achieve the interoperability between XML model and relational model. Until now, many suggestions have been proposed to achieve it. However several problems still remain. Most of all, the exiting methods do not consider implicit referential integrity relations, and it causes incorrect data delivery. One method to do this has been proposed with the restriction where one semantic is defined as only one same name in a given database. In real database world, this restriction cannot provide the application and extensibility. This paper proposes a noble conversion (RDB-to-XML) algorithm based on the similarity checking technique. The key point of our method is how to find implicit referential integrity relations between different field names presenting one same semantic. To resolve it, we define an enhanced implicity referentiai integrity relations extraction algorithm based on a widely used ontology, WordNet. The proposed conversion algorithm is more practical than the previous-similar approach.

  • PDF

Development of an Automatic Classification Model for Construction Site Photos with Semantic Analysis based on Korean Construction Specification (표준시방서 기반의 의미론적 분석을 반영한 건설 현장 사진 자동 분류 모델 개발)

  • Park, Min-Geon;Kim, Kyung-Hwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.58-67
    • /
    • 2024
  • In the era of the fourth industrial revolution, data plays a vital role in enhancing the productivity of industries. To advance digitalization in the construction industry, which suffers from a lack of available data, this study proposes a model that classifies construction site photos by work types. Unlike traditional image classification models that solely rely on visual data, the model in this study includes semantic analysis of construction work types. This is achieved by extracting the significance of relationships between objects and work types from the standard construction specification. These relationships are then used to enhance the classification process by correlating them with objects detected in photos. This model improves the interpretability and reliability of classification results, offering convenience to field operators in photo categorization tasks. Additionally, the model's practical utility has been validated through integration into a classification program. As a result, this study is expected to contribute to the digitalization of the construction industry.

A Study on Building Knowledge Base for Intelligent Battlefield Awareness Service

  • Jo, Se-Hyeon;Kim, Hack-Jun;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this paper, we propose a method to build a knowledge base based on natural language processing for intelligent battlefield awareness service. The current command and control system manages and utilizes the collected battlefield information and tactical data at a basic level such as registration, storage, and sharing, and information fusion and situation analysis by an analyst is performed. This is an analyst's temporal constraints and cognitive limitations, and generally only one interpretation is drawn, and biased thinking can be reflected. Therefore, it is essential to aware the battlefield situation of the command and control system and to establish the intellignet decision support system. To do this, it is necessary to build a knowledge base specialized in the command and control system and develop intelligent battlefield awareness services based on it. In this paper, among the entity names suggested in the exobrain corpus, which is the private data, the top 250 types of meaningful names were applied and the weapon system entity type was additionally identified to properly represent battlefield information. Based on this, we proposed a way to build a battlefield-aware knowledge base through mention extraction, cross-reference resolution, and relationship extraction.

Video Data Classification based on a Video Feature Profile (특성정보 프로파일에 기반한 동영상 데이터 분류)

  • Son Jeong-Sik;Chang Joong-Hyuk;Lee Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.31-42
    • /
    • 2005
  • Generally, conventional video searching or classification methods are based on its meta-data. However, it is almost Impossible to represent the precise information of a video data by its meta-data. Therefore, a processing method of video data that is based on its meta-data has a limitation to be efficiently applied in application fields. In this paper, for efficient classification of video data, a classification method of video data that is based on its low-level data is proposed. The proposed method extracts the characteristics of video data from the given video data by clustering process, and makes the profile of the video data. Subsequently. the similarity between the profile and video data to be classified is computed by a comparing process of the profile and the video data. Based on the similarity. the video data is classified properly. Furthermore, in order to improve the performance of the comparing process, generating and comparing techniques of integrated profile are presented. A comparing technique based on a differentiated weight to improve a result of a comparing Process Is also Presented. Finally, the performance of the proposed method is verified through a series of experiments using various video data.

A Text Mining-based Intrusion Log Recommendation in Digital Forensics (디지털 포렌식에서 텍스트 마이닝 기반 침입 흔적 로그 추천)

  • Ko, Sujeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.279-290
    • /
    • 2013
  • In digital forensics log files have been stored as a form of large data for the purpose of tracing users' past behaviors. It is difficult for investigators to manually analysis the large log data without clues. In this paper, we propose a text mining technique for extracting intrusion logs from a large log set to recommend reliable evidences to investigators. In the training stage, the proposed method extracts intrusion association words from a training log set by using Apriori algorithm after preprocessing and the probability of intrusion for association words are computed by combining support and confidence. Robinson's method of computing confidences for filtering spam mails is applied to extracting intrusion logs in the proposed method. As the results, the association word knowledge base is constructed by including the weights of the probability of intrusion for association words to improve the accuracy. In the test stage, the probability of intrusion logs and the probability of normal logs in a test log set are computed by Fisher's inverse chi-square classification algorithm based on the association word knowledge base respectively and intrusion logs are extracted from combining the results. Then, the intrusion logs are recommended to investigators. The proposed method uses a training method of clearly analyzing the meaning of data from an unstructured large log data. As the results, it complements the problem of reduction in accuracy caused by data ambiguity. In addition, the proposed method recommends intrusion logs by using Fisher's inverse chi-square classification algorithm. So, it reduces the rate of false positive(FP) and decreases in laborious effort to extract evidences manually.

(A Question Type Classifier based on a Support Vector Machine for a Korean Question-Answering System) (한국어 질의응답시스템을 위한 지지 벡터기계 기반의 질의유형분류기)

  • 김학수;안영훈;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.466-475
    • /
    • 2003
  • To build an efficient Question-Answering (QA) system, a question type classifier is needed. It can classify user's queries into predefined categories regardless of the surface form of a question. In this paper, we propose a question type classifier using a Support Vector Machine (SVM). The question type classifier first extracts features like lexical forms, part of speech and semantic markers from a user's question. The system uses $X^2$ statistic to select important features. Selected features are represented as a vector. Finally, a SVM categorizes questions into predefined categories according to the extracted features. In the experiment, the proposed system accomplished 86.4% accuracy The system precisely classifies question type without using any rules like lexico-syntactic patterns. Therefore, the system is robust and easily portable to other domains.

Travel mode classification method based on travel track information

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.133-142
    • /
    • 2021
  • Travel pattern recognition is widely used in many aspects such as user trajectory query, user behavior prediction, interest recommendation based on user location, user privacy protection and municipal transportation planning. Because the current recognition accuracy cannot meet the application requirements, the study of travel pattern recognition is the focus of trajectory data research. With the popularization of GPS navigation technology and intelligent mobile devices, a large amount of user mobile data information can be obtained from it, and many meaningful researches can be carried out based on this information. In the current travel pattern research method, the feature extraction of trajectory is limited to the basic attributes of trajectory (speed, angle, acceleration, etc.). In this paper, permutation entropy was used as an eigenvalue of trajectory to participate in the research of trajectory classification, and also used as an attribute to measure the complexity of time series. Velocity permutation entropy and angle permutation entropy were used as characteristics of trajectory to participate in the classification of travel patterns, and the accuracy of attribute classification based on permutation entropy used in this paper reached 81.47%.