• Title/Summary/Keyword: 의미정보 말뭉치

Search Result 178, Processing Time 0.02 seconds

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

Similarity Estimation between Verbs Using Semantic Information of their Argument (논항의 의미 정보를 이용한 동사의 유사도 추정)

  • Lee, Chae-Hun;Seok, Mi-Ran;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.197-200
    • /
    • 2014
  • 한국어의 경우 동사와 형용사는 문장에서의 역할이 명사와는 다르며, 동사의 의미는 동반하는 논항의 의미적, 통사적 특성에 따라 분화되므로 근본적으로 논항과 함께 고려되어야 한다. 논항이라 함은 명제를 표시하는 방법 중 하나로 관계와 논항으로 표시하는 방법이 있는데, 여기서 관계는 문장의 동사, 형용사 또는 다른 관계항에 해당하며, 논항은 특정시간, 장소, 사람, 대상을 지칭하는 것으로서 흔히 명사에 해당한다. 본 논문에서는 동사간의 의미 유사도를 추정하기 위하여, 수동으로 구축한 의미역 표지부착 말뭉치인 한국어 PropBank의 의미역인 ARG1에 해당하는 명사들을 동사의 주요 논항으로 보았다. 그리고 이들 주요 논항간의 의미 거리를 '코어넷 한국어 명사편'에서 계산하여 동사별로 이를 합산함으로써 이 계산한 값을 동사의 유사도로 추정하였다. 또한 본 연구에서 제안된 방식과 '코어넷 한국어 동사편'에서 동사간의 거리를 계산한 값 사이의 상관계수를 구하여 보았다.

  • PDF

Two-Level Clausal Segmentation Algorithm using Sense Information (의미 정보를 이용한 이단계 단문 분할 알고리즘)

  • Park, Hyun-Jae;Lee, Su-Seon;Woo, Yo-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.237-241
    • /
    • 1999
  • 단문 분할은 한 문장에 중심어인 용언이 복수개인 경우 용언을 중심으로 문장을 나누는 방법이다. 기존의 방법은 정형화된 문장의 경우 효율적인 결과를 얻을 수 있으나 구문적으로 복잡한 문장인 경우는 한계를 보였다. 본 논문에서는 이러한 한계를 극복하기 위해 구문 정보의 단문 분할이 아닌 의미 정보를 활용하여 복잡한 문장을 효율적으로 단문으로 분할하는 방법을 제안한다. 정형화된 문장의 경우와 달리 일상적인 문장은 문장의 구조적 애매성이나 조사의 생략 등이 빈번하므로 의미 수준에서의 단문 분할이 필요하다. 본 논문에서는 의미 영역에서 단문 분할의 할 경우 기존의 방법들의 애매성을 해소할 수 있다는 점을 보인다. 이를 위해, 먼저 하위범주화 사전과 시소러스의 의미 정보를 이용하여 용언과 보어 성분간의 의존구조를 1차적으로 작성하고 이후 구문적인 정보와 기타 문법적인 지식을 사용하여 기타 성분을 의존구조에 점진적으로 포함시켜가는 이단계 단문 분할 알고리즘을 제안한다. 제안된 이단계 단문 분할 방법의 유용성을 보이기 위해 ETRI-KONAN의 말뭉치 중 20,000문장을 반 자동적인 방법으로 술어와 보어 성분간의 의존구조를 태깅한 후 본 논문에서 제안한 방법과 비교하는 실험을 수행한다.

  • PDF

Construction and application of Korean Semantic-Network based on Korean Dictionary (사전을 기반으로 한 한국어 의미망 구축과 활용)

  • 최호섭;옥철영;장문수;장명길
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.448-450
    • /
    • 2002
  • 시소러스 의미망, 온톨로지 등과 같은 지식베이스는 자연언어처리와 관련된 여러 분야에서 중요한 언어자원의 역할을 담당하고 있다. 하지만 정보검색, 기계번역과 같은 특정 분야마다 다르게 구축되어 이러한 지식베이스는 실질적인 한국어 처리에는 크게 효과를 보지 못하고 있는 실정이다. 본 논문은 한국어를 대상으로 한 시소러스, 의미망의 등의 구축 방법론적 문제를 지적하고 말뭉치를 중심으로 한 텍스트 언어처리에 필요한 의미망의 구축 방법과 포괄적인 활용방안을 모색한다. 의미망 구축의 기반이 되는 지식은 각종 사전(dictionary)를 이용했으며, 구축하고 있는 의미망의 활용 가능성을 평가하기 위하여 ETRI의 의미기반 정보검색과 언어처리의 큰 문제 중 하나인 단어 중의성 해소(WSD)에서 어떻게 활용되는지를 살핀다. 그리하여 언어자인의 처리 방안 중의 하나인 의미망을 구축함으로써 언어를 효과적으로 처리하기 위한 기본적이면서 중요한 어휘 데이터베이스 마련과 동시에 언어자원 구축의 한 방향을 제시하고자 한다.

  • PDF

Word Sense Disambiguation Using Korean Word Definition Vectors (한국어 단어 정의 벡터를 이용한 단어 의미 모호성 해소)

  • Park, Jeong Yeon;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.195-198
    • /
    • 2021
  • 기존 연구에 따르면, 시소러스의 계층적 관계를 기반으로 압축한 의미 어휘 태그를 단어 의미 모호성 해소에 사용할 경우, 그 성능이 향상되었다. 본 논문에서는 시소러스를 사용하지 않고, 국어 사전에 포함된 단어의 의미 정의를 군집화하여 압축된 의미 어휘 태그를 만드는 방법을 제안한다. 또, 이를 이용하여 효율적으로 단어 의미 모호성을 해소하는 BERT 기반의 딥러닝 모델을 제안한다. 한국어 세종 의미 부착 말뭉치로 실험한 결과, 제안한 방법의 성능이 F1 97.21%로 기존 방법의 성능 F1 95.58%보다 1.63%p 향상되었다.

  • PDF

Korean Part-of-Speech Tagging using Disambiguation Rules for Ambiguous Word and Statistical Information (어휘별 중의성 제거 규칙과 통계 정보를 이용한 한국어 품사 태깅)

  • Ahn, Kwang-Mo;Han, Kyou-Youl;Seo, Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • A hybrid part-of-speech tagging approaches may be robust, easily extendable, and accurate because they can have the advantages of both statistical approach and rule-based approach. But conventional hybrid part-of-speech tagging systems hardly resolve some morphological ambiguities which can't be resolved by statistical information. It is because the coverage of rules is narrow. So, we define disambiguation rules for individual ambiguous word based on syntax and semantics of surround words. We select words from which the top 50% of ambiguities are occurred in Sejong corpus and build 1,814 rules for them. The accuracy of our hybrid part-of-speech tagging system using those rules is 98.28%.

Word Sense Disambiguation in Query Translation of CLTR (교차 언어 문서 검색에서 질의어의 중의성 해소 방법)

  • Kang, In-Su;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.52-58
    • /
    • 1997
  • 정보 검색에서는 질의문과 문서를 동일한 표현으로 변환시켜 관련성을 비교하게 된다. 특히 질의문과 문서의 언어가 서로 다른 교차 언어 문서 검색 (CLTR : Cross-Language Text Retrieval) 에서 이러한 변환 과정은 언어 변환을 수반하게 된다. 교차 언어 문서 검색의 기존 연구에는 사전, 말뭉치, 기계 번역 등을 이용한 방법들이 있다. 일반적으로 언어간 변환에는 필연적으로 의미의 중의성이 발생되며 사전에 기반한 기존 연구에서는 다의어의 중의성 의미해소를 고려치 않고 있다. 본 연구에서는 질의어의 언어 변환시 한-일 대역어 사전 및 카도가와 시소러스 (각천(角川) 시소러스) 에 기반한 질의어 중의성 해소 방법과 공기하는 대역어를 갖는 문서에 가중치를 부여하는 방법을 제안한다. 제안된 방법들은 일본어 특허 문서를 대상으로 실험하였으며 5 %의 정확도 향상을 얻을 수 있었다.

  • PDF

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

Automatic Data Augmentation for Korean AMR Sembanking & Parsing (한국어 의미 자원 구축 및 의미 파싱을 위한 Korean AMR 데이터 자동 증강)

  • Choe, Hyonsu;Min, Jinwoo;Na, Seung-Hoon;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.287-291
    • /
    • 2020
  • 본 연구에서는 한국어 의미 표상 자원 구축과 의미 파싱 성능 향상을 위한 데이터 자동 증강 방법을 제안하고 수동 구축 결과 대비 자동 변환 정확도를 보인다. 지도 학습 기반의 AMR 파싱 모델이 유의미한 성능에 도달하려면 대량의 주석 데이터가 반드시 필요하다. 본 연구에서는 기성 언어 분석 기술 또는 기존에 구축된 말뭉치의 주석 정보를 바탕으로 Semi-AMR 데이터를 변환해내는 알고리즘을 제시하며, 자동 변환 결과는 Gold-standard 데이터에 대해 Smatch F1 0.46의 일치도를 보였다. 일정 수준 이상의 정확도를 보이는 자동 증강 데이터는 주석 프로젝트에 소요되는 비용을 경감시키는 데에 활용될 수 있다.

  • PDF

A Study on the Construction of keyphrase dataset for paraphrase extraction (패러프레이즈 추출을 위한 키프레이즈 데이터셋 구축 방법론 연구)

  • Kang, Hyerin;Kang, Yejee;park, Seoyoon;Jang, Yeonji;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.357-362
    • /
    • 2020
  • 자연어 처리 응용 시스템이 패러프레이즈 표현을 얼마나 정확하게 포착하는가에 따라 응용 시스템의 성능 측면에서 차이가 난다. 따라서 자연어 처리의 응용 분야 전반에서 패러프레이즈 표현에 대한 중요성이 커지고 있다. 시스템의 성능 향상을 위해서는 모델을 학습시킬 충분한 말뭉치가 필요하다. 특히 이러한 패러프레이즈 말뭉치를 구축하기 위해서는 정확한 패러프레이즈 추출이 필수적이다. 따라서 본 연구에서는 패러프레이즈를 추출을 위한 언어 자원으로 키프레이즈 데이터셋을 제안하고 이를 기반으로 유사한 의미를 전달하는 패러프레이즈 관계의 문장을 추출하였다. 구축한 키프레이즈 데이터셋을 패러프레이즈 추출에 활용한다면 본 연구에서 수행한 것과 같은 간단한 방법으로 패러프레이즈 관계에 있는 문장을 찾을 수 있다는 것을 보였다.

  • PDF