• 제목/요약/키워드: 의미정보

검색결과 8,486건 처리시간 0.031초

사전 뜻풀이를 이용한 용언 의미 군집화 (Semantic Clustering of Predicate using Word Definition in Dictionary)

  • 배영준;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.46-51
    • /
    • 2010
  • 한국어의 어휘의미 정보를 명확히 파악하기 위해서는 어휘 의미 체계를 구축해야 한다. 본 논문에서는 어휘 의미 체계 구축의 단계 중 하나인 용언의 의미 군집화를 연구하였다. 주어 및 목적어의 논항 구조와 선택 제약정보, 부사의 결합정보를 이용한 이전의 연구와는 달리 의미태깅이 된 사전 뜻풀이의 용언정보를 이용하여 용언의 의미 군집화와 간단한 계층화를 시도하였다. 그리고 특정 부류의 일반 샘플을 이용했던 특정 용언의 부류가 아닌 사전에 존재하는 대부분의 용언들을 대상으로 연구를 진행하였다.

  • PDF

유사어를 이용한 단어 의미 중의성 해결 (Word Sense Disambiguation using Semantically Similar Words)

  • 서희철;이호;백대호;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.304-309
    • /
    • 1999
  • 본 논문에서는 의미계층구조에 나타난 유사어 정보를 이용해서 단어 의미 중의성을 해결하고자 한다. 의미계층구조를 이용한 기존의 방법에서는 의미 벡터를 이용해서 단어 의미 중의성을 해결했다. 의미 벡터는 의미별 학습 자료에서 획득되는 것으로 유사어들의 공통적인 특징만을 이용하고, 유사어 개별 특징은 이용하지 않는다. 본 논문에서는 유사어 개별 특징을 이용하기 위해서 유사어 벡터를 이용해서 단어 의미 중의성을 해결한다. 유사어 벡터는 유사어별 학습 자료에서 획득되는 것으로, 유사어의 개별 정보를 가지고 있는 벡터이다. 세 개의 한국어 명사에 대한 실험 결과, 의미 벡터를 이용하는 것보다 유사어 벡터를 이용하는 경우에 평균 9.5%정도의 성능향상이 있었다.

  • PDF

한국어 격틀 사전과 용언의 하위 범주 정보를 사용한 한국어 의미역 결정 (Korean Semantic Role Labeling using Case Frame and Subcategory of Predicate)

  • 김완수;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.198-201
    • /
    • 2015
  • 의미역 결정은 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 본 논문에서는 UPropBank 격틀 사전과 UWordMap의 용언의 하위 범주 정보를 이용하여 의미역을 부착하였다. 실험 결과 80.125%의 정확률로 의미역을 부착하는 성능을 보였다.

  • PDF

질의어 의미정보와 사용자 피드백을 이용한 웹 검색엔진의 성능향상 (Improving Performance of Web Search Engine using Query Word Senses and User Feedback)

  • 윤성희
    • 한국산학기술학회논문지
    • /
    • 제8권2호
    • /
    • pp.280-285
    • /
    • 2007
  • 본 논문에서는 웹 정보검색 시스템의 사용자 질의어와 색인에 기반한 검색 과정에서 나타나는 중의성을 해소하기 위해 질의어 의미정보와 사용자 피드백을 사용하여 검색 성능을 향상시키기는 방법을 제안한다. 의미 정보를 이용한 질의어 중의성 해소 과정은 결과 문서집합에서 의미적으로 무관한 많은 문서들을 배제함으로써 검색 정확도를 크게 높일 수 있는 매우 중요한 처리 과정이다. 검색의 색인어가 되는 명사 중심의 의미범주 분류를 이용하여 의미정보 지식베이스를 구축하고, 웹 문서들을 색인어와 사용되는 의미범주로 분류한다. 사용자의 질의 의미 선택과 정답문서에 대한 참조 행위를 피드백 정보로 웹 페이지의 순위 결정에 반영하여 검색시스템의 성능을 향상시킬 수 있다.

  • PDF

술어와 조사 정보를 이용한 논항의 의미역 변환 (Semantic Role Transformation of Arguments using Predicate and Josa Information)

  • 서민정;석미란;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.51-55
    • /
    • 2014
  • 의미역 결정 (Semantic Role Labeling) 은 문장 내의 술어와 이들의 논항들의 의미 관계를 결정하는 과정을 뜻한다. 의미역 결정을 하기 위해서는 대량의 말뭉치와 다양한 언어 자원이 필요한데, 많은 경우에 PropBank 말뭉치가 사용된다. 한국어 PropBank는 다른 언어에 비해 자료가 적어 그것만을 가지고 의미역 결정을 하기에 적절하지 않다. 또한 한국어 의미 분석을 위해서 지금까지는 세종 말뭉치나 의미역이 활용되어 오기도 하였다. 따라서 한국어 의미역 결정에서는 한국어 PropBank 뿐만 아닌 세종 의미역 표지 부착 말뭉치의 구축 역시 요구되는데 말뭉치 구축 작업이 수동 부착 작업이기 때문에 많은 시간과 비용이 소모된다. 본 논문에서는 이러한 문제점을 해결하기 위해 이미 구축되어 있는 한국어 PropBank 의미역을 세종 의미역으로 자동 변환하는 방법을 제시한다. 자동 변환을 위해서는 먼저 PropBank 의미역의 변환 후보 의미역을 구하여 이들 중에서 가장 적절한 의미역으로 변환한다. 자동 변환을 위해서는 크게 3 가지 특징을 활용하는데, 첫째는 변환 대상 논항의 의미 유사성이고, 둘째는 논항과 의미 관계를 가지고 있는 술어, 그리고 셋째는 논항과 결합되어 있는 조사이다. 이 세 가지 특징을 사용하여 정확한 의미역 변환을 위해 술어, 조사의 의미역 결합 확률 테이블을 구축한다.

  • PDF

이중 그래프 데이터 모델을 이용한 이미지 정보 표현과 저장 (A Representation and Storage of Image Information using A Dual Graph Data Model)

  • 박미화;엄기현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 추계학술발표논문집
    • /
    • pp.124-129
    • /
    • 1998
  • 이미지 데이터베이스를 구성하여 사용자가 원하는 정보를 추출하는 의미 기반 검색을 지원하기 위해서는 이미지 내용에 관한 의미 정보들이 데이터 모델로 구조화되어야 한다. 본 논문에서는 다양한 정적 이미지 내용 정보들에 대한 내용 기반 검색과 의미 기반 검색을 제공하는 이미지 데이터 모델을 소개하고 이를 이용하여 이미지가 담고 있는 의미 정보를 표현하고 데이터베이스 스키마로 변환하여 저장하는 구조와 검색하는 방법을 소개한다. 본 이미지 데이터 모델은 이미지내에 포함된 시각 객체들의 내용 정보를 그래프 구조로 표현하고 객체들간의 의미 관계를 정의한다. 이는 이미지 내용에 대한 정확한 정보 표현과 질의와 검색을 가능하게 한다.

  • PDF

레벨 기반의 유사도 계산을 이용한 PropBank 의미역과 Sejong 의미역 간의 자동 변환 (Automatic Transformation of Semantic Roles between PropBank and Sejong using Similarity Estimation based on Tree Level)

  • 윤영신;석미란;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.221-224
    • /
    • 2014
  • 의미 표지 부착 작업은 구문 표지 부착된 문장의 술어-논항 구조를 파악하여 논항에 적절한 의미역을 부착하는 과정이다. 이 작업을 통하여 생성되는 의미 표지 부착 말뭉치는 의미역 결정에 있어서 절대적으로 필요한 자원이 된다. 의미 표지 부착 말뭉치로는 세계적으로 PropBank가 널리 활용되고 있는데 이를 한국어에 적용시키기 위해서는 PropBank 의미역과 Sejong 의미역 간의 자동 변환이 필요하다. 이전에 제안되었던 이종 의미역 간의 자동변환 방법에서는 명사 계층의 구조 정보를 반영하지 않았다는 문제점이 있었다. 본 논문에서는 이러한 문제점을 보강하기 위하여 명사 계층구조를 반영하여 한국어 PropBank 의미역을 Sejong 의미역으로 자동 변환하는 방법을 제안한다. 제안하는 방법은 PropBank와 Sejong의 맵핑관계 중에서 1:N으로 맵핑되는 PropBank 의미역을 기준으로 명사 계층구조에서 변환 대상 의미역을 가지고 있는 단어와 변환 후보 의미역을 가진 단어들의 개념번호를 뽑아 두 단어 간의 거리를 측정한다. 그리고 레벨 당 가중치를 주어 유사도 계산을 하여 유사도가 적은 값으로 의미역을 자동 변환한다. 본 논문에서 제안하는 방법은 0.8의 성능을 보인다.

  • PDF

나이브 베이즈 분류기를 이용한 의미제약이 강화된 한국어 복합명사 의미 분석 (A Semantic Analysis of Korean Compound Nouns with Enforced Semantic Constraints using a Na${\ddot{i}}$ve Bayes Classifier)

  • 이용훈;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.102-106
    • /
    • 2011
  • 본 논문에서는 사전 원어정보를 이용한 기존 방법에 나이브 베이즈 분류기를 추가로 이용하는 의미제약 기술에 대하여 소개한다. 의미제약은 의미 분석의 전처리 단계로서 부분적으로 중의성을 해소하여 입력된 복합명사의 분석 정확도 뿐만 아니라 전체적인 분석시간의 단축에도 큰 도움을 준다. 나이브 베이즈 분류기를 이용하는 방법은 사전의 의존성으로 인해 제약할 수 없는 2-gram을 대상으로 제약을 시도한다. 분류기를 위한 학습데이터는 의미 태깅된 기분석 2-gram사전을 이용하여 U-WIN의 관계정보와 사전 그리고 패턴들에 의해 생성된다. 원어정보로 해결하지 못하는 34.63%의 2-gram중 2.83%에 대해 추가로 제약에 성공 하였다.

  • PDF

멀티데이터베이스 환경 하에서의 Description Logic을 이용한 의미상 질의 최적화 (emantic Query Optimization Using Description Logic in Mutidatabase Systems)

  • 이태웅;권주흠;백두권
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.644-646
    • /
    • 2003
  • 물류 공급 관리 시스템과 같은 정보 통합 시스템은 분산되어 있는 데이터베이스들에 대해서 정보를 통합하여 사용자에게 보여준다. 이러한 정보 통합 시스템은 전역 질의를 생성하고 지역 질의로 변환하여 실행하기 전에 질의를 최적화할 필요성이 있다. 그런데, 단일데이터 베이스 시스템에서의 질의 최적화 기법은 멀티데이터베이스 시스템에서 사용하기에는 부적절하다. 이는 분산된 데이터베이스 환경에서 오는 높은 연결 오버헤드, 높은 계산 시간, 데이터의 중복성 뿐만 아니라 의미 이질성 문제 때문에 기존의 최적화 방법은 사용하기가 어렵다. 이를 해결하기 위해서 의미상 질의 최적화 방법이 연구되어 왔다. 의미상 질의 최적화는 전역 질의보다 더 효과적으로 응답하고 의미상으로 동등한 질의로 변환하기 위해서 의미상 지식을 사용한다. 본 논문에서는 정보 통합 시스템에서 Description Logic(DL)을 이용하여 의미상 지식으로 사용할 지식 기반을 표현하고 이를 바탕으로 추론화된 지식을 이용하는 의미상 질의 최적화 방식을 제시한다.

  • PDF

DTD의 의미 구조 분석을 이용한 XML 문서의 변환 (A Transformation of XML Documents With Semantic Constraints)

  • 곽동규;최종명;조용윤;유재우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.589.2-861
    • /
    • 2004
  • XML 문서를 변환하는 목적은 하나의 어플리케이션에서 사용되는 XML 문서를 다른 XML 어플리케이션에서 재 사용하여 사용자에게 동일한 정보를 제공하는데 있다 XML 문서는 어플리케이션 특성에 따라 한 문서에서 전달할 수 있는 정보의 량이 다르다. 따라서 문서를 변환하기 전에 어플리케이션의 특성에 따라 문서를 분할하거나 병합하여야 한다[1]. 또한, XML 문서의 정보는 속성에 따라 문법적인 특성을 가진다. 본 논문은 문벌적인 특성을 의미 속성이라 하고 의미 속성을 파악하기 위해 XML 문서의 의미 구조와 의미 구조 관계를 정의한다. 그리고 정의된 의미 구조와 의에 구조 관계를 이용하여 문서 정보의 속성을 분류하는 방법을 제안한다. 변환 규칙은 의ロP 구조 관계가 유사한 엘리먼트간의 대응으로 정의하고, 변환 규칙을 이용하여 문서 변환을 실행하여 변환 XML과 의미 관계 구조가 유사한 피 변환 XML 문서를 생성한다. 의미구조 분석을 이용한 변환은 기존의 사용 패턴을 분석한 변환에서 벗어나 DTD의 분석을 통한 자동화된 문서 변환 방법을 제공한다.

  • PDF