• Title/Summary/Keyword: 의미자질

Search Result 214, Processing Time 0.025 seconds

A Comparative Study of Semantic Featueres about 'zheng', 'fa', 'qin', 'xi', 'tao' ('정(征)', '벌(伐)', '침(侵)', '습(襲)', '토(討)'의 의미 특징 비교)

  • Yu, Hyuna
    • Cross-Cultural Studies
    • /
    • v.37
    • /
    • pp.383-400
    • /
    • 2014
  • Synonym means that the conceptual meaning of the word is the same or similar while other meanings or function of language difference may exist. That is two or more identified names correspond with one sense and have the words with minor difference. Words with synonym relation are a set of same meaning but conceptual area or emotional color, language function can be identified. Therefore, the core research of synonym is the difference analysis and in general difference analysis is progress in the three aspects of Meaning, Pragmatic, and Semantic. However, the difference analysis is the most important. In this paper, the set of meaning item of synonym word 'Attack' is 'zheng', 'fa', 'tao', 'qin', 'xi'. We compare the meaning of five verbs and analyze the difference and characteristics.

Performance Improvement of Word Clustering Using Ontology (온톨로지를 이용한 단어 군집화 성능 개선)

  • Park Eun-Jin;Kim Jae-Hoon;Ock Cheol-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.337-344
    • /
    • 2006
  • In this paper, we describe the design and the implementation of word clustering system using a definition of an entry word in the dictionary, called a dictionary definition. Generally word clustering needs various features like words and the performance of a system for the word clustering depends on using some kinds of features. Dictionary definition describes the meaning of an entry in detail, but words in the dictionary definition are implicative or abstractive, and then its length is not long. The word clustering using only features extracted from the dictionary definition results in a lots of small-size clusters. In order to make large-size clusters and improve the performance, we need to transform the features into more general words with keeping the original meaning of the dictionary definition as intact as possible. In this paper, we propose two methods for extending the dictionary definition using ontology. One is to extend the dictionary definition to parent words on the ontology and the other is to extend the dictionary definition to some words in fixed depth from the root of the ontology. Through our experiments, we have observed that the proposed systems outperform that without extending features, and the latter's extending method overtakes the former's extending method in performance. We have also observed that verbs are very useful in extending features in the case of word clustering.

Generate Korean image captions using LSTM (LSTM을 이용한 한국어 이미지 캡션 생성)

  • Park, Seong-Jae;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.82-84
    • /
    • 2017
  • 본 논문에서는 한국어 이미지 캡션을 학습하기 위한 데이터를 작성하고 딥러닝을 통해 예측하는 모델을 제안한다. 한국어 데이터 생성을 위해 MS COCO 영어 캡션을 번역하여 한국어로 변환하고 수정하였다. 이미지 캡션 생성을 위한 모델은 CNN을 이용하여 이미지를 512차원의 자질로 인코딩한다. 인코딩된 자질을 LSTM의 입력으로 사용하여 캡션을 생성하였다. 생성된 한국어 MS COCO 데이터에 대해 어절 단위, 형태소 단위, 의미형태소 단위 실험을 진행하였고 그 중 가장 높은 성능을 보인 형태소 단위 모델을 영어 모델과 비교하여 영어 모델과 비슷한 성능을 얻음을 증명하였다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

Analysis over Extracting Physical Referring Expressions by Recursive Application over Neural Network (물리적 지시 표현 추출 및 처리를 위한 신경망의 재귀적 사용에 대한 고찰)

  • Koo, Sangjun;Lee, Kyusong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.142-147
    • /
    • 2012
  • 본 논문에서는 신경망을 재귀적으로 사용하여 문장에서 지시 표현을 추출하고 분석하는 방법에 대해서 제안한다. 임의의 문장이 들어올 때, 문장을 구성하는 각 단어들은 통사론적 자질 벡터와 의미론적 자질 벡터로 나눌 수 있다. 이들 벡터들의 쌍을 인자로써 입력받는 신경망 구조를 제시할 수 있으며, 신경망의 출력 결과는 다시 재귀적으로 쌍인자 신경망에 입력으로써 주입된다. 신경망을 재귀적으로 학습시킴으로써, 문장 내의 지시 표현을 추출할 수 있다. 쌍인자 신경망 파싱 모델의 성능을 측정했고, 제안한 모델의 문제점과 가능성에 대해서 관찰하였다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

Grapheme-to-Phoneme Conversion of Arabic Numeral Expressions for Embedded TTS Systems (임베디드 TTS 시스템을 위한 아라비안 숫자의 문자 변환)

  • Jung, Young-Im;Yoon, Ae-Sun;Kwon, Hyuk-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.442-444
    • /
    • 2005
  • 본 논문에서는 아라비안 숫자의 중의성을 효과적으로 제거하고 숫자 표현의 발음을 정확하게 문자화할 수 있는 임베디드 시스템용 경량화된 아라비안 숫자 읽기 시스템을 제안한다. 이를 위해 7 가지의 숫자 읽기 방식(Headings of Arabic Numerals RAN)을 분류하였고, 문자화 규칙을 설정하기 위해. (1) 문맥 자질, (2) 패턴 자질, (3) 휴리스틱 정보를 숫자 표현의 의미에 따라 분석하였다. 그리고 숫자의 문자화 시스템을 최적화하여 임베디드 시스템에 탑재하기 위해 (1) 형태소 분석 모듈의 분리, (2) 사전 압축, (3) 인명과 지명의 제거를 하였고, 이를 홍해 심각한 정확도 손실 없이 메모리 사용량과 처리 시간을 크게 줄일 수 있었다. 경량화된 mini-TAN 은 $96.9\~98.3\%$의 정확도를 보이며, 기존 상용 TTS 시스템에 비해서도 숫자 읽기의 처리에 있어 높은 정확도를 보인다.

  • PDF

Recognition Of Chinese Named-Entity Using Support Vector Machine (SVM을 이용한 중국어 개체명 식별)

  • Jin, Feng;Na, Seung-Hoon;Kang, In-Su;Li, Jin-Ji;Kim, Dong-Il;Lee, Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.934-936
    • /
    • 2004
  • 본문에서는 최근 들어 각광을 받고 있는 패턴인식 방법론인 Support Vector Machine을 이용하여 중국어 개체명을 식별하는 방법을 제안하고자 한다. SVM(support vector machine)은 입력 자질이 많을 경우에도 안정적인 성능을 나타내고 보편적으로 적용할 수 있는 모델을 개발할 수 있는 장점이 있다. 실험에서 어휘. 품사, 의미부류 등 많은 수의 자질을 이용하였다. 실험결과는 본문에서 제안한 방법이 튜닝을 거치지 않아도 좋은 성능을 나타낼 수 있고, 수행 속도도 만족스럽다는 것을 보여주었다.

  • PDF

Rhetorical Sentence Classification Using Context Information (문맥 정보를 이용한 논문 문장 수사학적 분류)

  • Seong, Su-Jin;Kim, Seong-Chan;Lee, Seung-Woo;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.316-319
    • /
    • 2021
  • 우리는 과학기술 분야 논문 내 문장에 대해 논문의 의미 구조를 반영하는 수사학적 태그를 자동으로 부착하기 위한 분류 모델을 구축한다. 문장의 태그가 이전 문장의 태그와 상관관계를 갖는 특징을 반영하여 이전 문장을 추가 자질로 사용한다. 이전 문장을 추가 자질로 모델에 입력하기 위해 5 가지 결합 방법에 대한 실험을 진행한다. 실험 결과 각 문장에 대해 독립된 인코더를 사용하고 인코더의 결과 벡터를 concatenation 연산으로 조합하여 분류를 수행하는 것이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

Korean Named Entity Recognition using ManiFL (ManiFL을 이용한 한국어 개체명 인식)

  • Kim, Wansu;Shin, Joon-choul;Park, Seoyeon;Ock, CheolYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.633-636
    • /
    • 2021
  • 개체명 인식은 주어진 문장 안의 고유한 의미가 있는 단어들을 인명, 지명, 단체명 등의 미리 정의된 개체의 범주로 분류하는 문제이다. 최근 연구에서는 딥 러닝, 대용량 언어 모델을 사용한 연구들이 활발하게 연구되어 높은 성능을 보이고 있다. 하지만 이러한 방법은 대용량 학습 말뭉치와 이를 처리할 수 있는 높은 연산 능력을 필요로 하며 모델의 실행 속도가 느려서 실용적으로 사용하기 어려운 문제가 있다. 본 논문에서는 얕은 기계 학습 기법을 적용한 ManiFL을 사용한 개체명 인식 시스템을 제안한다. 형태소의 음절, 품사 정보, 직전 형태소의 라벨만을 자질로 사용하여 실험하였다. 실험 결과 F1 score 기준 90.6%의 성능과 초당 974 문장을 처리하는 속도를 보였다.

  • PDF