개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.
신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.
본 논문에서는 웹 문서들이 가지는 용어 정보들과 어휘들의 의미구조를 계층적 형태로 표현한 온틀로지 기반 자동 문서분류 방법을 제안한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 점하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하며, 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.
개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간과 같이 고유한 의미를 갖는 단어들을 찾아 개체명을 부착하는 기술이다. 최근 개체명 인식기는 형태소 단위나 음절 단위의 입력을 사용하는 연구가 주로 진행되고 있다. 그러나 형태소 단위 개체명 인식은 미등록어를 처리하지 못하는 문제점이 존재하고 음절 단위 개체명 인식은 단어의 의미를 제대로 반영하지 못하는 문제점이 존재한다. 본 논문에서는 이 문제점을 보완하기 위해 품사 정보를 활용한 음절 단위 개체명 인식기를 제안한다. 또한 개체명 인식 성능에 큰 영향을 미치는 개체명 사전 자질을 더 효과적으로 사용할 수 있는 방법을 제안하며 이 방법을 사용했을 때 기존의 방법보다 향상된 개체명 인식 성능(F1-score 0.8576)을 보였다.
동시통역에서는 번역이 즉각적으로 빠르게 이루어지면서 원천텍스트의 의미가 정확히 전달되는 것이 핵심이다. 따라서 실시간 동시통역 시스템의 개발을 위해서는 번역정확도와 번역속도가 균형적으로 최적을 이루는 지점에서 분절하는 방법론이 필요하다. 이를 위해 본 연구에서는 운율 정보, 문법·통사 규칙, 의미 단위, 담화구조 표지, 분절단위의 길이 등 다양한 언어학적 자질을 제시하였다. 또한 본 논문에서 제안한 방법론을 검증하는 실험을 진행하였으며 그 결과 영한 데이터는 82%, 한영 데이터는 90%의 정확도를 보였다.
상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 같은 개체(entity)를 의미하는 멘션을 찾아 그룹화하는 자연어처리 태스크이다. 한국어 상호참조해결에서는 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델과 포인터 네트워크 모델을 이용한 방법이 연구되었다. 구글에서 공개한 BERT 모델은 자연어처리 태스크에 적용되어 많은 성능 향상을 보였다. 본 논문에서는 한국어 상호참조해결을 위한 BERT 기반 end-to-end 신경망 모델을 제안하고, 한국어 데이터로 사전 학습된 KorBERT를 이용하고, 한국어의 구조적, 의미적 특징을 반영하기 위하여 의존구문분석 자질과 개체명 자질을 적용한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터 셋에서 CoNLL F1 (DEV) 71.00%, (TEST) 69.01%의 성능을 보여 기존 연구들에 비하여 높은 성능을 보였다.
본 논문에서는 효율적인 정보검색을 위한 의미 기반의 질의 분석 및 확장을 제안한다. 기존의 정보검색 시스템들은 사용자 질의로 자연언어 질의를 허용하고 있지만 단순히 명사 단어의 색인어를 사용자 질의로부터 추출하여 정보검색에 활용하기 때문에 사용자의 질의 의도를 반영한 정보검색을 하지 못한다. 이러한 문제점을 해결하기 위해서 의미 기반 질의 분석 및 확장은 사용자의 질의를 의미적으로 분석하여, 질의유형을 결정하고 의미 자질들을 추출한다. 추출된 의미 자질들과 정답을 표현하기 위해 사용되는 구문구조를 이용하여 사용자 질의를 확장한다. 또한 확장된 질의를 이용하여 정답을 포함하는 관련문서들을 정보검색 결과의 상위에 랭크시킬 수 있는 방법을 제시한다. 비교적 짧지만 사용자의 질의 의도를 충분히 표현하고 있는 자연언어 질의에 대한 의미 기반의 질의 분석 및 확장을 통해 정보검색의 정확률을 향상시킬 수 있음을 보였다.
영-한 기계번역 중 변환 단계에서 한국어 문장을 생성하기 위해서는 구구조 변환 후 조사 및 대역어 선택으로 이루어진다. 그러나 하나의 영어 단어는 여러 개의 한국어 의미들을 가지고 있기 때문에 문장에서 사용된 영어의 정확한 의미에 해당하는 한국어 대역어를 선택하는 것은 번역의 질을 높이고 시스템의 성능에 매우 중요한 역할을 한다. 특히 용언 및 체언의 대역어 선택은 문장에서 서로 간의 의미적인 관계를 고려하여야 올바른 대역어를 선택할 수 있다. 기존에는 전자 사전에 용언과 체언간의 연어 정보(collocation information)를 구축하여 대역어 선택의 문제를 해결하려고 하였으나 연어 정보가 사전에 존재하지 않을 때 올바른 대역어를 선택할 수 없었다. 또한 용언과 체언의 관계를 나타내는 조사를 선택하기 위하여 격(case)을 세분화하여 사전을 구축하였으나 격의 분류 및 사전을 구축할 경우 격을 선택하는 어려움이 있었다. 이에 따라 본 논문에서는 문형(sentence pattern)에 의한 방법으로 용언의 대역어 및 용언이 갖는 필수격 체언의 조사와 대역어 선택방법을 제안한다. 문형의 구조적인 정보에는 용언과 체언의 의미적 역할(thematic role)을 하는 조사 및 용언이 갖는 필수격 체언의 의미 자질(semantic feature)을 갖고 있다. 이러한 의미 자질을 wordnet과 한/영 및 영/한 사전을 이용하여 의미 지표(semantic marker)를 갖는 문형 사전을 구축한다. 또한 의미 지표를 갖는 문형 사전을 기반으로 조사 및 대역어 선택 알고리즘을 개발한다.
본 연구에서는 로봇의 자동 동화구연을 목표로 발화문장 상의 감정 파악 및 등장인물 별 다앙한 TTS 보이스 선택에 활용 가능한 발화문장의 화자 파악문제를 다룬다. 본 연구에서는 기존 규칙기반 방법론에서 많이 활용되어온 자질인 후보의 위치, 화자 후보의 주격/목적격 여부, 발화동사 존재 여부를 비롯하여 동화에 자주 나타나는 등장인물의 의미적 분류 및 등장인물의 등장/퇴장과 관련된 동사들을 추가 자질로 활용한다. 사람 및 동식물, 무생물이 모두 화자가 될 수 있는 동화 코퍼스에서 제안한 자질들을 활용하여 의사결정트리로 학습 및 검증한 결과 규칙기반의 베이스라인 방법에 비해 최대 49%의 정확도가 향상되었고, 제안한 방법론이 데이터의 변화에도 강인한 것을 확인할 수 있었다.
요즘 많은 사람들은 트위터를 통해 짧은 문장의 트윗을 작성하여 자신의 의견이나 생각을 표현한다. 사람들이 작성한 트윗은 사용자의 연령, 성별, 지역에 따라 다른 특성이 담겨있다. 이러한 정보를 이용하여, 기업에서는 연령대, 성별, 지역에 따라 각기 다른 마케팅 전략을 세울 수 있을 것이다. 본 논문에서는 트위터 사용자들의 트윗을 분석하여 연령대, 성별, 지역을 예측하려 한다. 네이버 오픈사전의 자질, 한국전자통신연구원(ETRI)의 개체명 사전을 이용한 자질 및 한국어 형태소 분석, 음절 단위의 bigram을 클래스별 의미 있는 자질로 선택하고 LDA를 이용하여 예측된 확률분포를 활용하여 분류한 결과, 연령 72%, 성별 75%, 지역 43%의 납득할만한 예측 정확도 결과를 얻게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.