• Title/Summary/Keyword: 의미부류

Search Result 56, Processing Time 0.023 seconds

Answer Extraction Using Named Entity Feedback in Question Answering System (질의 응답 시스템에서 개체 피드백을 이용한 정답 추출)

  • 나승훈;강인수;이상율;이종혁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.676-678
    • /
    • 2002
  • 질의 응답 시스템(Question Answering: QA)에서 정답 유형 부류(Answer Type Taxonomy: ATT)란 사용자 질문 분석을 위한 미 부류 체계를 의미하는 것으로, ATT의 크기가 클수록 시스템의 성능은 높아진다. ATT를 확장하기 위해서는, 개체(Named Entity)에 의미 범주를 결정하는 개체 분류기(Named Entity Tagger의 분류 체계가 세분되어야 하는데, 기존의 개체 분류기는 한문서 내에서 그 개체의 분류를 시도하기 때문에, 분류를 위한 문맥 정보의 양이 부족하여, 정확하고 상세한 분류를 기대하기 힘들다. 본 논문에서는 동일 개체에 대한 문맥 정보를 수집하기 위해, 그 개체가 나타나는 다른 문서들을 검색하는 개체 피드백 Named Enti쇼 Feedback)이라는 기법을 사용한다. 개체가 상세히 분류됨에 따라 ATT도 확장될 수 있었으며, 이렇게 확장된 ATT상에서의 정답 추출은 baseline보다 약 7%정도의 성능 향상을 보여, 개체 피드백의 효과를 확인할 수 있었다.

  • PDF

Determination of Thematic Roles according to Syntactic Relations Using Rules and Statistical Models in Korean Language Processing (한국어 전산처리에서 규칙과 확률을 이용한 구문관계에 따른 의미역 결정)

  • 강신재;박정혜
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper presents an efficient determination method of thematic roles from syntactic relations using rules and statistical model in Korean language processing. This process is one of the main core of semantic analysis and an important issue to be solved in natural language processing. It is problematic to describe rules for determining thematic roles by only using general linguistic knowledge and experience, since the final result may be different according to the subjective views of researchers, and it is impossible to construct rules to cover all cases. However, our hybrid method is objective and efficient by considering large corpora, which contain practical usages of Korean language, and case frames in the Sejong Electronic Lexicon of Korean, which is being developed by dozens of Korean linguistic researchers. To determine thematic roles more correctly, our system uses syntactic relations, semantic classes, morpheme information, position of double subject. Especially by using semantic classes, we can increase the applicability of our system.

  • PDF

World Sense Disambiguation using Multiple Feature Decision Lists (다중 자질 결정 목록을 이용한 단어 의미 중의성 해결)

  • 서희철;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.659-671
    • /
    • 2003
  • This paper proposes a method of disambiguating the senses of words using decision lists, which consists of rules with confidence values. The rule of decision list is composed of a boolean function(=precondition) and a class(=sense). Decision lists classify the instance using the rule with the highest confidence value that is matched with it. Previous work disambiguated the senses using single feature decision lists, whose boolean function was composed of only one feature. However, this approach can be affected more severely by data sparseness problem and preprocessing errors. Hence, we propose multiple feature decision lists that have the boolean function consisting of more than one feature in order to identify the senses of words. Experiments are performed with 1 sense tagged corpus in Korean and 5 sense tagged corpus in English. The experimental results show that multiple feature decision lists are more effective than single feature decision lists in disambiguating senses.

분류사와 명사 의미 부류

  • 최민우;강범모
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.395-401
    • /
    • 2000
  • 국어에서는 어떠한 대상의 수량을 표현할 때 수사와 함께 분류사(classifier)를 사용한다. 따라서 분류사는 그 특성상 수량 표현 구문을 형성하는 대상 명사와 의미적으로 밀접한 관련을 지니게되는데, 단순히 명사를 셈하는 것 뿐 아니라 명사의 의미적 특성을 명세(specify)해 준다고 할 수 있다. 본 연구에서는 이러한 명사와 분류사의 연관성에 초점을 맞추어 분류사의 사용에 따른 명사의 범주화 및 계층 구조를 보이고, 컴퓨터 말뭉치 자료를 이용하여 그 관계를 좀더 명확히 밝히는 것을 목적으로 한다. 이러한 연구는 언어를 전산적으로 처리하는데 필수적인 전산어휘부(computational lexicon)의 구축에 필요한 기초 작업이 될 수 있다.

  • PDF

Cross-Enrichment of the Heterogenous Ontologies Through Mapping Their Conceptual Structures: the Case of Sejong Semantic Classes and KorLexNoun 1.5 (이종 개념체계의 상호보완방안 연구 - 세종의미부류와 KorLexNoun 1.5 의 사상을 중심으로)

  • Bae, Sun-Mee;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.165-196
    • /
    • 2010
  • The primary goal of this paper is to propose methods of enriching two heterogeneous ontologies: Sejong Semantic Classes (SJSC) and KorLexNoun 1.5 (KLN). In order to achieve this goal, this study introduces the pros and cons of two ontologies, and analyzes the error patterns found during the fine-grained manual mapping processes between them. Error patterns can be classified into four types: (1) structural defectives involved in node branching, (2) errors in assigning the semantic classes, (3) deficiency in providing linguistic information, and (4) lack of the lexical units representing specific concepts. According to these error patterns, we propose different solutions in order to correct the node branching defectives and the semantic class assignment, to complement the deficiency of linguistic information, and to increase the number of lexical units suitably allotted to their corresponding concepts. Using the results of this study, we can obtain more enriched ontologies by correcting the defects and errors in each ontology, which will lead to the enhancement of practicality for syntactic and semantic analysis.

  • PDF

The Event Structure of Korean Unaccusative Verbs (한국어 비대격 동사의 사건구조)

  • 이준규;이정민
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.108-113
    • /
    • 2000
  • 자동사의 두 하위부류, 비대격(unaccusative) 동사와 비능격 (unergative)동사는 Perlmutter(1978)의 비대격 가설 (Unaccusative Hypothesis) 이후 여러 관점에서 활발히 노의 되어왔다. 한국어에서는 사건구조적 측면에서 두 부류가 차이를 보이며, 이런 사실은 인간의 인지작용과 밀접한 관련을 맺는다. 사건구조를 과정(process)사건과 상태(state)로 가정할 때 비능격 동사는 과정사건이, 비대격 동사는 상태사건이 부각된다. 비대격 동사도 두 가지 부류로 나뉠 수 있는데, '도착하다'처럼 과정사건이 언어표현에서 중시되지 않고 결과적인 상태부분만 중요시 되는 유형(unacc_type_1)과 '녹다'처럼 과정사건도 중시되는 사건 구조를 지닌 유형(unacc_type_2)이다. 결국 비대격 동사는 결과상태를 중시하는 사건구조를 중요시 하지만 과정사건의 지각 정도에 따라 다른 양상을 보인다. 한편 비대격 동사는 사동사와도 밀접한 연관 관계를 지닌다. 많은 논의에서 비대격/사동의 교체를 논리적 다의어로 보고 분석을 시도해 왔다. 따라서 사동사를 중심으로 분석한 경우와 비대격 동사를 중심으로 분석한 경우가 있다. 본고에서는 사동분석(causative analysis)은 한국어 기술에는 적절치 않다고 판단한다. 사동분석에서 도입하는 행동주의 사건유발부분이 반드시 비대격 동사의 표현에 필수적인 것은 아니기 때문이다. 끝으로 Pustejovsky(1995)의 생성어휘부(Generative Lexicon) 이론을 한국어에 맞게 확장·수정한 이정민·강범모·남승호(1997)의 모형에 따라 두 가지 유형의 비대격 동사의 어휘 의미구조를 표상한다.

  • PDF

Semantic Role Assignment for Korean Adverbial Case Using Sejong Electronic Dictionary (세종전자사전을 이용한 한국어 부사격의 의미역 결정)

  • Shin, Myung-Chul;Lee, Yong-Hun;Kim, Mi-Young;Chung, You-Jin;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.120-126
    • /
    • 2005
  • 세종전자사전의 용언사전과 체언사전에 기재된 용언의 격틀과 명사의 의미부류는 문장의 의미분석을 위한 핵심적인 언어자원이다. 본 논문에서는 용언사전을 전산처리가 용이한 격틀사전으로 변형한 다음 이를 이용한 의미역 결정 시스템을 구축하였고 기계학습 방법에 기반한 의미역 결정 시스템과 혼합하여 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 방법에 대해 다루고 있다.

  • PDF

Classification of Brain MR Images using 2 Level Decision Tree Learning (2 단계 결정 트리 학습을 이용한 뇌 MR 영상 분류)

  • Kim, Yong-Uk;Kim, Jun-Tae
    • Annual Conference of KIPS
    • /
    • 2001.04a
    • /
    • pp.341-344
    • /
    • 2001
  • 본 논문에서는 학습을 수행하여 뇌 MR 이미지를 자동으로 분류하고 검색하는 시스템을 설계하였다. 이미지로부터 얻을 수 있는 정보는 크게 두 가지 부류로 나눌 수 있다. 이미지 자체로부터 얻을수 있는 크기, 색상, 질감, 윤곽선 등의 하위레벨(low-level) 정보가 있고, 이미지 의미 해석에서 오는 전이, 포함, 방향, 등의 상위레벨(high-level) 정보가 있다. 이 논문은 의료 이미지에 대하여 상위 및 하위 레벨 정보의 각 특징을 살리고 효과적으로 검색하기 위해, 두 부류의 이미지 정보에 대한 결정 트리(Decision Tree) 학습을 2 단계로 적용하여 이미지를 분류하도록 시스템을 설계하였다.

  • PDF

Korean Noun Clustering Via Incremental Conceptual Clustering (개념분류기법을 적용한 한국에 명사분류)

  • Jung, Yeon-Su;Cho, Jeong-Mi;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.50-55
    • /
    • 1995
  • 많은 언어관계들이 의미적으로 유사한 단어들의 집합에 적응된다. 그러므로 단어들을 의미가 비슷한 것들의 집합으로 분류하는 것은 아주 유용한 일이다. 본 논문에서는 말뭉치로부터의 동사와 명사의 분포정보를 이용하여 명사들을 분류하고자 한다. 한국어에서는 명사마다 문장에서 그 명사를 특정한 격으로 사용할 수 있는 동사들이 제한되어 있다. 그러므로 본 논문에서는 말뭉치에서 나타나는 명사와 그 명사를 특정한 격으로 사용하는 동사들의 분포정보로부터 명사들을 분류하는 방법을 제시한다. 형태소 해석된 50만 단어 말뭉치에서 가장 빈도수가 높은 명사 85단어를 대상으로 실험하였다. 명사와 동사의 구문정보를 사용하므로 의미적으로는 다르지만 쓰임이 비슷한 단어들도 같은 부류로 분류되었다. 의미적으로 애매성을 가지는 명사들의 경우도 실험결과를 나쁘게하는 요인이 되었다. 그리고, 좀더 좋은 결과를 얻기 위해서는 동사들도 의미가 유사한 것들로 분류한 후, 명사와 동사의 분포정보가 아닌 명사와 동사들의 집합의 분포정보를 이용하는 것도 종은 방법이 될 것이다.

  • PDF

Semantic Clustering of Predicates using Word Definition in Dictionary (사전 뜻풀이를 이용한 용언 의미 군집화)

  • Bae, Young-Jun;Choe, Ho-Seop;Song, Yoo-Hwa;Ock, Cheol-Young
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.3
    • /
    • pp.271-298
    • /
    • 2011
  • The lexical semantic system should be built to grasp lexical semantic information more clearly. In this paper, we studied a semantic clustering of predicates that is one of the steps in building the lexical semantic system. Unlike previous studies that used argument of subcategorization(subject and object), selectional restrictions and interaction information of adverb, we used sense tagged definition in dictionary for the semantic clustering of predicate, and also attempted hierarchical clustering of predicate using the relationship between the generic concept and the specific concept. Most of the predicates in the dictionary were used for clustering. Total of 106,501 predicates(85,754 verbs, 20,747 adjectives) were used for the test. We got results of clustering which is 2,748 clusters of predicate and 130 recursive definition clusters and 261 sub-clusters. The maximum depth of cluster was 16 depth. We compared results of clustering with the Sejong semantic classes for evaluation. The results showed 70.14% of the cohesion.

  • PDF