Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.676-678
/
2002
질의 응답 시스템(Question Answering: QA)에서 정답 유형 부류(Answer Type Taxonomy: ATT)란 사용자 질문 분석을 위한 미 부류 체계를 의미하는 것으로, ATT의 크기가 클수록 시스템의 성능은 높아진다. ATT를 확장하기 위해서는, 개체(Named Entity)에 의미 범주를 결정하는 개체 분류기(Named Entity Tagger의 분류 체계가 세분되어야 하는데, 기존의 개체 분류기는 한문서 내에서 그 개체의 분류를 시도하기 때문에, 분류를 위한 문맥 정보의 양이 부족하여, 정확하고 상세한 분류를 기대하기 힘들다. 본 논문에서는 동일 개체에 대한 문맥 정보를 수집하기 위해, 그 개체가 나타나는 다른 문서들을 검색하는 개체 피드백 Named Enti쇼 Feedback)이라는 기법을 사용한다. 개체가 상세히 분류됨에 따라 ATT도 확장될 수 있었으며, 이렇게 확장된 ATT상에서의 정답 추출은 baseline보다 약 7%정도의 성능 향상을 보여, 개체 피드백의 효과를 확인할 수 있었다.
Journal of Korea Society of Industrial Information Systems
/
v.8
no.1
/
pp.33-42
/
2003
This paper presents an efficient determination method of thematic roles from syntactic relations using rules and statistical model in Korean language processing. This process is one of the main core of semantic analysis and an important issue to be solved in natural language processing. It is problematic to describe rules for determining thematic roles by only using general linguistic knowledge and experience, since the final result may be different according to the subjective views of researchers, and it is impossible to construct rules to cover all cases. However, our hybrid method is objective and efficient by considering large corpora, which contain practical usages of Korean language, and case frames in the Sejong Electronic Lexicon of Korean, which is being developed by dozens of Korean linguistic researchers. To determine thematic roles more correctly, our system uses syntactic relations, semantic classes, morpheme information, position of double subject. Especially by using semantic classes, we can increase the applicability of our system.
This paper proposes a method of disambiguating the senses of words using decision lists, which consists of rules with confidence values. The rule of decision list is composed of a boolean function(=precondition) and a class(=sense). Decision lists classify the instance using the rule with the highest confidence value that is matched with it. Previous work disambiguated the senses using single feature decision lists, whose boolean function was composed of only one feature. However, this approach can be affected more severely by data sparseness problem and preprocessing errors. Hence, we propose multiple feature decision lists that have the boolean function consisting of more than one feature in order to identify the senses of words. Experiments are performed with 1 sense tagged corpus in Korean and 5 sense tagged corpus in English. The experimental results show that multiple feature decision lists are more effective than single feature decision lists in disambiguating senses.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.395-401
/
2000
국어에서는 어떠한 대상의 수량을 표현할 때 수사와 함께 분류사(classifier)를 사용한다. 따라서 분류사는 그 특성상 수량 표현 구문을 형성하는 대상 명사와 의미적으로 밀접한 관련을 지니게되는데, 단순히 명사를 셈하는 것 뿐 아니라 명사의 의미적 특성을 명세(specify)해 준다고 할 수 있다. 본 연구에서는 이러한 명사와 분류사의 연관성에 초점을 맞추어 분류사의 사용에 따른 명사의 범주화 및 계층 구조를 보이고, 컴퓨터 말뭉치 자료를 이용하여 그 관계를 좀더 명확히 밝히는 것을 목적으로 한다. 이러한 연구는 언어를 전산적으로 처리하는데 필수적인 전산어휘부(computational lexicon)의 구축에 필요한 기초 작업이 될 수 있다.
The primary goal of this paper is to propose methods of enriching two heterogeneous ontologies: Sejong Semantic Classes (SJSC) and KorLexNoun 1.5 (KLN). In order to achieve this goal, this study introduces the pros and cons of two ontologies, and analyzes the error patterns found during the fine-grained manual mapping processes between them. Error patterns can be classified into four types: (1) structural defectives involved in node branching, (2) errors in assigning the semantic classes, (3) deficiency in providing linguistic information, and (4) lack of the lexical units representing specific concepts. According to these error patterns, we propose different solutions in order to correct the node branching defectives and the semantic class assignment, to complement the deficiency of linguistic information, and to increase the number of lexical units suitably allotted to their corresponding concepts. Using the results of this study, we can obtain more enriched ontologies by correcting the defects and errors in each ontology, which will lead to the enhancement of practicality for syntactic and semantic analysis.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.05a
/
pp.108-113
/
2000
자동사의 두 하위부류, 비대격(unaccusative) 동사와 비능격 (unergative)동사는 Perlmutter(1978)의 비대격 가설 (Unaccusative Hypothesis) 이후 여러 관점에서 활발히 노의 되어왔다. 한국어에서는 사건구조적 측면에서 두 부류가 차이를 보이며, 이런 사실은 인간의 인지작용과 밀접한 관련을 맺는다. 사건구조를 과정(process)사건과 상태(state)로 가정할 때 비능격 동사는 과정사건이, 비대격 동사는 상태사건이 부각된다. 비대격 동사도 두 가지 부류로 나뉠 수 있는데, '도착하다'처럼 과정사건이 언어표현에서 중시되지 않고 결과적인 상태부분만 중요시 되는 유형(unacc_type_1)과 '녹다'처럼 과정사건도 중시되는 사건 구조를 지닌 유형(unacc_type_2)이다. 결국 비대격 동사는 결과상태를 중시하는 사건구조를 중요시 하지만 과정사건의 지각 정도에 따라 다른 양상을 보인다. 한편 비대격 동사는 사동사와도 밀접한 연관 관계를 지닌다. 많은 논의에서 비대격/사동의 교체를 논리적 다의어로 보고 분석을 시도해 왔다. 따라서 사동사를 중심으로 분석한 경우와 비대격 동사를 중심으로 분석한 경우가 있다. 본고에서는 사동분석(causative analysis)은 한국어 기술에는 적절치 않다고 판단한다. 사동분석에서 도입하는 행동주의 사건유발부분이 반드시 비대격 동사의 표현에 필수적인 것은 아니기 때문이다. 끝으로 Pustejovsky(1995)의 생성어휘부(Generative Lexicon) 이론을 한국어에 맞게 확장·수정한 이정민·강범모·남승호(1997)의 모형에 따라 두 가지 유형의 비대격 동사의 어휘 의미구조를 표상한다.
Annual Conference on Human and Language Technology
/
2005.10a
/
pp.120-126
/
2005
세종전자사전의 용언사전과 체언사전에 기재된 용언의 격틀과 명사의 의미부류는 문장의 의미분석을 위한 핵심적인 언어자원이다. 본 논문에서는 용언사전을 전산처리가 용이한 격틀사전으로 변형한 다음 이를 이용한 의미역 결정 시스템을 구축하였고 기계학습 방법에 기반한 의미역 결정 시스템과 혼합하여 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 방법에 대해 다루고 있다.
본 논문에서는 학습을 수행하여 뇌 MR 이미지를 자동으로 분류하고 검색하는 시스템을 설계하였다. 이미지로부터 얻을 수 있는 정보는 크게 두 가지 부류로 나눌 수 있다. 이미지 자체로부터 얻을수 있는 크기, 색상, 질감, 윤곽선 등의 하위레벨(low-level) 정보가 있고, 이미지 의미 해석에서 오는 전이, 포함, 방향, 등의 상위레벨(high-level) 정보가 있다. 이 논문은 의료 이미지에 대하여 상위 및 하위 레벨 정보의 각 특징을 살리고 효과적으로 검색하기 위해, 두 부류의 이미지 정보에 대한 결정 트리(Decision Tree) 학습을 2 단계로 적용하여 이미지를 분류하도록 시스템을 설계하였다.
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.50-55
/
1995
많은 언어관계들이 의미적으로 유사한 단어들의 집합에 적응된다. 그러므로 단어들을 의미가 비슷한 것들의 집합으로 분류하는 것은 아주 유용한 일이다. 본 논문에서는 말뭉치로부터의 동사와 명사의 분포정보를 이용하여 명사들을 분류하고자 한다. 한국어에서는 명사마다 문장에서 그 명사를 특정한 격으로 사용할 수 있는 동사들이 제한되어 있다. 그러므로 본 논문에서는 말뭉치에서 나타나는 명사와 그 명사를 특정한 격으로 사용하는 동사들의 분포정보로부터 명사들을 분류하는 방법을 제시한다. 형태소 해석된 50만 단어 말뭉치에서 가장 빈도수가 높은 명사 85단어를 대상으로 실험하였다. 명사와 동사의 구문정보를 사용하므로 의미적으로는 다르지만 쓰임이 비슷한 단어들도 같은 부류로 분류되었다. 의미적으로 애매성을 가지는 명사들의 경우도 실험결과를 나쁘게하는 요인이 되었다. 그리고, 좀더 좋은 결과를 얻기 위해서는 동사들도 의미가 유사한 것들로 분류한 후, 명사와 동사의 분포정보가 아닌 명사와 동사들의 집합의 분포정보를 이용하는 것도 종은 방법이 될 것이다.
The lexical semantic system should be built to grasp lexical semantic information more clearly. In this paper, we studied a semantic clustering of predicates that is one of the steps in building the lexical semantic system. Unlike previous studies that used argument of subcategorization(subject and object), selectional restrictions and interaction information of adverb, we used sense tagged definition in dictionary for the semantic clustering of predicate, and also attempted hierarchical clustering of predicate using the relationship between the generic concept and the specific concept. Most of the predicates in the dictionary were used for clustering. Total of 106,501 predicates(85,754 verbs, 20,747 adjectives) were used for the test. We got results of clustering which is 2,748 clusters of predicate and 130 recursive definition clusters and 261 sub-clusters. The maximum depth of cluster was 16 depth. We compared results of clustering with the Sejong semantic classes for evaluation. The results showed 70.14% of the cohesion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.