Annual Conference on Human and Language Technology
/
2022.10a
/
pp.268-271
/
2022
단어 의미 모호성 해소는 동형이의어의 의미를 문맥에 맞게 결정하는 일이다. 최근 연구에서는 희소 데이터 처리를 위해 시소러스를 사용해 의미 어휘를 압축하고 사용하는 방법이 좋은 성능을 보였다[1]. 본 연구에서는 시소러스 없이 군집화 알고리즘으로 의미 어휘를 압축하는 방법의 성능 향상을 위해 두 가지 방법을 제안한다. 첫째, 의미적으로 유사한 의미 어휘 집합인 범주(category) 정보를 군집화를 위한 초기 군집 생성에 사용한다. 둘째, 다양하고 많은 문맥 정보를 학습해 만들어진 품질 좋은 벡터를 군집화에 사용한다. 영어데이터인 SemCor 데이터를 학습하고 Senseval, Semeval 5개 데이터로 평가한 결과, 제안한 방법의 평균 성능이 기존 연구보다 1.5%p 높은 F1 70.6%를 달성했다.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.952-955
/
2014
본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.46-51
/
2010
한국어의 어휘의미 정보를 명확히 파악하기 위해서는 어휘 의미 체계를 구축해야 한다. 본 논문에서는 어휘 의미 체계 구축의 단계 중 하나인 용언의 의미 군집화를 연구하였다. 주어 및 목적어의 논항 구조와 선택 제약정보, 부사의 결합정보를 이용한 이전의 연구와는 달리 의미태깅이 된 사전 뜻풀이의 용언정보를 이용하여 용언의 의미 군집화와 간단한 계층화를 시도하였다. 그리고 특정 부류의 일반 샘플을 이용했던 특정 용언의 부류가 아닌 사전에 존재하는 대부분의 용언들을 대상으로 연구를 진행하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.82-84
/
2003
UMLS 의미망은 크기가 방대하고 복잡하여 사용자가 이해하기가 어렵고 화면상에 모든 의미망을 모두 표현할 수 없다는 단점을 가지고 있다. 이 문제를 해결하기 위해 의미망을 효율적으로 분할하기 위한 규칙들이 소개되고 있지만 이것은 UMLS 의미망이 수정될 때마다 규칙을 적용하여 수작업으로 분류를 해야한다는 단점이 있다. 이 문제점을 해결하기 위해 유전자 알고리즘을 이용한 UMLS 의미망의 자동 군집화 방법을 제안한다. 제안한 방법은 각각의 의미유형 간의 연결된 의미관계를 사용하여 의미망을 구조적으로 유사한 의미유형 집합들로 군집화하고 규칙에 의한 군집 방법의 결과 비교 평가한다.
The lexical semantic system should be built to grasp lexical semantic information more clearly. In this paper, we studied a semantic clustering of predicates that is one of the steps in building the lexical semantic system. Unlike previous studies that used argument of subcategorization(subject and object), selectional restrictions and interaction information of adverb, we used sense tagged definition in dictionary for the semantic clustering of predicate, and also attempted hierarchical clustering of predicate using the relationship between the generic concept and the specific concept. Most of the predicates in the dictionary were used for clustering. Total of 106,501 predicates(85,754 verbs, 20,747 adjectives) were used for the test. We got results of clustering which is 2,748 clusters of predicate and 130 recursive definition clusters and 261 sub-clusters. The maximum depth of cluster was 16 depth. We compared results of clustering with the Sejong semantic classes for evaluation. The results showed 70.14% of the cohesion.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.721-723
/
2020
부분 공간 군집화는 고차원 데이터에서 의미 있는 특징들을 선별 및 추출하여 저차원의 부분 공간에서 군집화 하는 것이다. 그러나 최근 딥러닝 활용한 부분 공간 군집화 연구들은 AutoEncoder을 기반으로 의미있는 특징을 선별하는 것이 아닌 특징 맵의 크기를 증가시켜서 네트워크의 표현 능력에 중점을 둔 연구되고 있다. 본 논문에서는 AutoEncdoer 네트워크에 Channel Attention 모델을 활용하여 Encoder와 Decoder에서 부분 공간 군집화를 위한 특징을 강조하는 네트워크를 제안한다. 본 논문에서 제안하는 네트워크는 고차원의 이미지에서 부분 공간 군집화를 위해 강조된 특징 맵을 추출하고 이를 이용해서 보다 향상된 성능을 보여주었다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.69-71
/
2000
군집화는 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 대부분의 군집화 기법들은 비교적 적은 양의 데이터를 대상으로 한 것이고 다차원 대용량의 데이터 처리에 관한 문제는 다루지 않고 있어서 데이터 마이닝을 위한 군집화 기법으로는 부적절하다. 따라서 본 논문을 통해 대용량의 데이터에 적용할 수 있는 새로운 군집화 알고리즘인 계층적 대표값 군집화(HRC) 기법을 제안한다. HRC는 자기조직화지도와 계층적 군집화 기법을 접목한 하이브리드 방법으로 두 단계에 거쳐 군집화를 수행한다. 첫 번째 단계에서 자기조직화지도를 통해 데이터를 요약하고, 두 번째 단계에서 요약된 대표값 정보만을 가지고 계층적인 군집화를 수행한다. 또한, 두 번째 단계의 계층적 군집화 적용시 양질의 군집을 발견하기 위해 군집간의 유사도를 측정하는 새로운 척도를 고안하였다. 그리고 실험을 통해 HRC와 기존 군집화 알고리즘이 발견한 군집의 질을 비교하여 성능을 평가했다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.559-561
/
2004
본 논문에서는 다의어의 현실적인 의미 분포의 결정에 대해 이야기 하고자 한다. 수동으로 구축한 의미체계인 사전이나 시소러스들은 그 의미구분의 경개가 모호하고 비현실적인 부분이 많아서 언어처리 시스템의 적용에 문제점으로 지적되고 있다. 그러므로, 본 연구에서는 대용량 코퍼스에서 추출한 공기정보와 자동 군집화 방법들을 사용하여 실질적인 다의어의 의미 경계를 발견하는 방법을 제안하였다. 수동 구축된 사전과 코퍼스 기반 사전의 다의어 의미 분포와 비교해 본 결과, 본 논문에서 제안한 방법의 결과가 코퍼스 기반 사전의 의미 분포와 매우 유사한 결과를 보이는 것을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.601-603
/
2005
군집 유효화 평가는 군집화 알고리즘을 진정한 의미의 비감독 학습이 가능하도록 만든다는 의미에서 그 중요성이 더해지고 있다. 본 논문에서는 이 군집 유효화 평가에 일반적으로 이용되는 군집 유효화 지수들의 설계원리를 분석하고 기존 지수들의 부합성을 분석한다. 우리는 제 (I) 부에서 합 형식의 지수들을 다루었으며, 본 논문에서는 비 형식의 지수들을 다룬다. 합형식의 CVI에서처럼 저역 필터링의 문제점을 해결하였으며, 또한, 부작용 없이 비형식의 지수들의 성능을 향상시킬 수 있는 새로운 기법을 제시한다. 새로운 지수들의 성능은 실험 학습을 통해 제시된다.
Clustering is a data mining method which help discovering interesting data groups in large databases. In traditional data clustering, similarity between objects in the cluster is measured by pairwise similarity of objects. But we devise an advanced measurement called item similarity in this paper, in terms of nature of clustering transaction data and use this measurement to perform clustering. This new algorithm show the similarity by accepting the concept of relationship between different attributes. With this item similarity measurement, we develop an efficient clustering algorithm for target marketing in each group.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.