• Title/Summary/Keyword: 의미군집화

Search Result 130, Processing Time 0.023 seconds

Improving Clustered Sense Labels for Word Sense Disambiguation (단어 의미 모호성 해소를 위한 군집화된 의미 어휘의 품질 향상)

  • Jeongyeon Park;Hyeong Jin Shin;Jae Sung Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.268-271
    • /
    • 2022
  • 단어 의미 모호성 해소는 동형이의어의 의미를 문맥에 맞게 결정하는 일이다. 최근 연구에서는 희소 데이터 처리를 위해 시소러스를 사용해 의미 어휘를 압축하고 사용하는 방법이 좋은 성능을 보였다[1]. 본 연구에서는 시소러스 없이 군집화 알고리즘으로 의미 어휘를 압축하는 방법의 성능 향상을 위해 두 가지 방법을 제안한다. 첫째, 의미적으로 유사한 의미 어휘 집합인 범주(category) 정보를 군집화를 위한 초기 군집 생성에 사용한다. 둘째, 다양하고 많은 문맥 정보를 학습해 만들어진 품질 좋은 벡터를 군집화에 사용한다. 영어데이터인 SemCor 데이터를 학습하고 Senseval, Semeval 5개 데이터로 평가한 결과, 제안한 방법의 평균 성능이 기존 연구보다 1.5%p 높은 F1 70.6%를 달성했다.

  • PDF

Agglomerative Hierarchical Clustering Using Latent Semantic Analysis in Information Retrieval (정보 검색에서의 잠재 의미 분석 방법을 이용한 응집 계층 군집화 기법 연구)

  • Khiati, Abdel-Ilah Zakaria;Kang, Daehyun;Park, Hansaem;Kwon, Kyunglag;Chung, In-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.952-955
    • /
    • 2014
  • 본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.

Semantic Clustering of Predicate using Word Definition in Dictionary (사전 뜻풀이를 이용한 용언 의미 군집화)

  • Bae, Young-Jun;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.46-51
    • /
    • 2010
  • 한국어의 어휘의미 정보를 명확히 파악하기 위해서는 어휘 의미 체계를 구축해야 한다. 본 논문에서는 어휘 의미 체계 구축의 단계 중 하나인 용언의 의미 군집화를 연구하였다. 주어 및 목적어의 논항 구조와 선택 제약정보, 부사의 결합정보를 이용한 이전의 연구와는 달리 의미태깅이 된 사전 뜻풀이의 용언정보를 이용하여 용언의 의미 군집화와 간단한 계층화를 시도하였다. 그리고 특정 부류의 일반 샘플을 이용했던 특정 용언의 부류가 아닌 사전에 존재하는 대부분의 용언들을 대상으로 연구를 진행하였다.

  • PDF

Semantic Network Automatic Clustering Method of the Unified Medical Language System Using Genetic Algorithm (유전자 알고리즘을 이용한 통합의학언어시스템(UMLS)의 의미망 자동 군집 방법)

  • 지영신;김태준;전혜경;정헌만;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.82-84
    • /
    • 2003
  • UMLS 의미망은 크기가 방대하고 복잡하여 사용자가 이해하기가 어렵고 화면상에 모든 의미망을 모두 표현할 수 없다는 단점을 가지고 있다. 이 문제를 해결하기 위해 의미망을 효율적으로 분할하기 위한 규칙들이 소개되고 있지만 이것은 UMLS 의미망이 수정될 때마다 규칙을 적용하여 수작업으로 분류를 해야한다는 단점이 있다. 이 문제점을 해결하기 위해 유전자 알고리즘을 이용한 UMLS 의미망의 자동 군집화 방법을 제안한다. 제안한 방법은 각각의 의미유형 간의 연결된 의미관계를 사용하여 의미망을 구조적으로 유사한 의미유형 집합들로 군집화하고 규칙에 의한 군집 방법의 결과 비교 평가한다.

  • PDF

Semantic Clustering of Predicates using Word Definition in Dictionary (사전 뜻풀이를 이용한 용언 의미 군집화)

  • Bae, Young-Jun;Choe, Ho-Seop;Song, Yoo-Hwa;Ock, Cheol-Young
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.3
    • /
    • pp.271-298
    • /
    • 2011
  • The lexical semantic system should be built to grasp lexical semantic information more clearly. In this paper, we studied a semantic clustering of predicates that is one of the steps in building the lexical semantic system. Unlike previous studies that used argument of subcategorization(subject and object), selectional restrictions and interaction information of adverb, we used sense tagged definition in dictionary for the semantic clustering of predicate, and also attempted hierarchical clustering of predicate using the relationship between the generic concept and the specific concept. Most of the predicates in the dictionary were used for clustering. Total of 106,501 predicates(85,754 verbs, 20,747 adjectives) were used for the test. We got results of clustering which is 2,748 clusters of predicate and 130 recursive definition clusters and 261 sub-clusters. The maximum depth of cluster was 16 depth. We compared results of clustering with the Sejong semantic classes for evaluation. The results showed 70.14% of the cohesion.

  • PDF

Deep Subspace clustering with attention mechanism (데이터 표현 강조 기법을 활용한 부분 공간 군집화)

  • Baek, Sang Won;Yoon, Sang Min
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.721-723
    • /
    • 2020
  • 부분 공간 군집화는 고차원 데이터에서 의미 있는 특징들을 선별 및 추출하여 저차원의 부분 공간에서 군집화 하는 것이다. 그러나 최근 딥러닝 활용한 부분 공간 군집화 연구들은 AutoEncoder을 기반으로 의미있는 특징을 선별하는 것이 아닌 특징 맵의 크기를 증가시켜서 네트워크의 표현 능력에 중점을 둔 연구되고 있다. 본 논문에서는 AutoEncdoer 네트워크에 Channel Attention 모델을 활용하여 Encoder와 Decoder에서 부분 공간 군집화를 위한 특징을 강조하는 네트워크를 제안한다. 본 논문에서 제안하는 네트워크는 고차원의 이미지에서 부분 공간 군집화를 위해 강조된 특징 맵을 추출하고 이를 이용해서 보다 향상된 성능을 보여주었다.

  • PDF

A Hierarchical Representatives Clustering Technique for Data Mining (데이터 마이닝을 위한 계층적 대표값 군집화 기법)

  • 안병주;김은주;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.69-71
    • /
    • 2000
  • 군집화는 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 대부분의 군집화 기법들은 비교적 적은 양의 데이터를 대상으로 한 것이고 다차원 대용량의 데이터 처리에 관한 문제는 다루지 않고 있어서 데이터 마이닝을 위한 군집화 기법으로는 부적절하다. 따라서 본 논문을 통해 대용량의 데이터에 적용할 수 있는 새로운 군집화 알고리즘인 계층적 대표값 군집화(HRC) 기법을 제안한다. HRC는 자기조직화지도와 계층적 군집화 기법을 접목한 하이브리드 방법으로 두 단계에 거쳐 군집화를 수행한다. 첫 번째 단계에서 자기조직화지도를 통해 데이터를 요약하고, 두 번째 단계에서 요약된 대표값 정보만을 가지고 계층적인 군집화를 수행한다. 또한, 두 번째 단계의 계층적 군집화 적용시 양질의 군집을 발견하기 위해 군집간의 유사도를 측정하는 새로운 척도를 고안하였다. 그리고 실험을 통해 HRC와 기존 군집화 알고리즘이 발견한 군집의 질을 비교하여 성능을 평가했다.

  • PDF

Automatic word sense clustering using collocation for practical sense boundaries (의미 경계의 현실화를 위한 공기정보의 자동 군집화)

  • 신사임;최기선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.559-561
    • /
    • 2004
  • 본 논문에서는 다의어의 현실적인 의미 분포의 결정에 대해 이야기 하고자 한다. 수동으로 구축한 의미체계인 사전이나 시소러스들은 그 의미구분의 경개가 모호하고 비현실적인 부분이 많아서 언어처리 시스템의 적용에 문제점으로 지적되고 있다. 그러므로, 본 연구에서는 대용량 코퍼스에서 추출한 공기정보와 자동 군집화 방법들을 사용하여 실질적인 다의어의 의미 경계를 발견하는 방법을 제안하였다. 수동 구축된 사전과 코퍼스 기반 사전의 다의어 의미 분포와 비교해 본 결과, 본 논문에서 제안한 방법의 결과가 코퍼스 기반 사전의 의미 분포와 매우 유사한 결과를 보이는 것을 확인할 수 있었다.

  • PDF

Analysis and New Indices of Cluster Validity Indices in Ratio Type (비형식의 군집 유효화 지수의 분석과 새로운 지수 개발)

  • Kim Minho;Ramakrishna R.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.601-603
    • /
    • 2005
  • 군집 유효화 평가는 군집화 알고리즘을 진정한 의미의 비감독 학습이 가능하도록 만든다는 의미에서 그 중요성이 더해지고 있다. 본 논문에서는 이 군집 유효화 평가에 일반적으로 이용되는 군집 유효화 지수들의 설계원리를 분석하고 기존 지수들의 부합성을 분석한다. 우리는 제 (I) 부에서 합 형식의 지수들을 다루었으며, 본 논문에서는 비 형식의 지수들을 다룬다. 합형식의 CVI에서처럼 저역 필터링의 문제점을 해결하였으며, 또한, 부작용 없이 비형식의 지수들의 성능을 향상시킬 수 있는 새로운 기법을 제시한다. 새로운 지수들의 성능은 실험 학습을 통해 제시된다.

  • PDF

Transactions Clustering based on Item Similarity (항목 유사도를 고려한 트랜잭션 클러스터링)

  • 이상욱;김재련
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.179-193
    • /
    • 2003
  • Clustering is a data mining method which help discovering interesting data groups in large databases. In traditional data clustering, similarity between objects in the cluster is measured by pairwise similarity of objects. But we devise an advanced measurement called item similarity in this paper, in terms of nature of clustering transaction data and use this measurement to perform clustering. This new algorithm show the similarity by accepting the concept of relationship between different attributes. With this item similarity measurement, we develop an efficient clustering algorithm for target marketing in each group.

  • PDF