• Title/Summary/Keyword: 응회암 변질대

Search Result 20, Processing Time 0.026 seconds

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Occurrence of the Pb-Zn Skarn Deposits in Gukjeon Mine, Korea (국전 Pb-Zn 스카른 광상의 산출상태)

  • Yang, Chang-Moon;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.413-428
    • /
    • 2010
  • The Gukjeon Pb-Zn mine was recognized as skarn deposits which replaced the limestone layer of the Jeongkansan Formation by intrusion of biotite granite in late Cretaceous. The Jeongkansan Formation is mainly composed of tuffaceous shale, and interlayers of sandstone, andesitic tuff, limestone, and conglomerate. The limestone layer is located in the lower part of the Jeongkansan Formation with 6~8 m in thickness and about 500 m in length. The Gukjeon deposits are divided into the Jukgang ore bodies once mined underground and the eastern ore bodies. Main ores are sphalerite and galena, in association with small amounts of chalcopyrite, arsenopyrite, pyrite, and pyrrhotite, etc. Skarns mainly consist of clinopyroxenes and Ca-garnets, associated with actinolite, chlorite, axinite, and calcite, etc. The Jukgang ore bodies show symmetrical distribution of zoning outward, representing clinopyroxene (hedenbergite) zone, clinopyroxene-garnet (grossular) zone, garnet (andradite) zone, and alteration zone of hornfels. $Fe^{2+}$ contents in clinopyroxenes increase with decreasing sphalerite grade. Sphalerite ores are found in all zones and $Fe^{2+}$ contents in sphalerite increase in the same way as those in clinopyroxenes, implying that clinopyroxene and sphalerite are closely related each other. It is concluded that the Gukjeon ores occurred in the ore rich zone of high grade sphalerite with less pyrite in assoication with clinopyroxene.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (3) Miryang Napseok Doposits (우리나라 동남부지역의 열수광상에 대한 광물학적 및 광상학적 연구: (3) 밀양납석 광상)

  • Kim, Soo-Jin;Kim, Jeong-Jin;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.93-101
    • /
    • 1992
  • Several "Napseok" mines are distribute in the Miryang area where the volcanic rocks are hydrothermally altered. The "Napseok" are pyrophyllite and dickite, with a small amount of silicates such as quartz, illite, tosudite and dumortierite. Other associated minerals are oxides, hydroxides, sulfides, sulfates and phosphates. Pyrophyllite which occurs as 2M polytype exhibits that the basal spacing increases due to dehydroxylation at 750${\circ}C$. Halloysite shows tubular forms. Wavellite is precipitated in fissures during the latest stage of the hydrothermal alteration process. Five mineral zones, that is pyrophyllite-deckite, illite, halloysite, silica, and albite-chlorite zones, are recognized with decreasing alteration degree. Clay minerals were formed by leaching of Si and alkali ions fron the country rocks, considering mineral assemblages, pyrophyllite polytype and thermodynamical data reported in the literature, temperatures of formation of main clay deposits are assumed to be 270 to 350${\circ}C$.

  • PDF

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Seongsan Dickite Deposits, Korea; Estimation of Ore - Forming Temperature and aNa+/aK+ Ratio of the Hydrothermal Fluid (성산딕카이트광상에서의 백악기산성마그마티즘에 관련된 열수변질작용 ; 광상형성온도의 측정 및 열수용액의 aNa+/aK+)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.259-273
    • /
    • 1992
  • The Seongsan mine is one of the largest dickite deposits in the southwestern part of the Korean Peninsula. The main constithent minerals of the ore are dickite and quartz with accessory alunite, kaolinite and sericite. The geology around the Seongsan mine consists mainly of the late Cretaceous felsic volcanic rocks. In the studied area, these rocks make a synclinal structure with an axis of E-W direction plunging to the east. Most of the felsic volcanic rocks have undergone extensive hydrothermal alteration. The hydrothermally altered rocks can be classified into the following zones: Dickite, Dickite-Quartz, Quartz, Sericite, Albite and Chlorite zones, from the center to the margin of the alteration mass. Such zonal arrangement of altered rocks suggests that the country rocks, most of which are upper part of the rhyolite and welded tuff, were altered by strongly acid hydrothermal solutions. It is reasonable to consider that initial gas and solution containing $H_2S$ and other compounds were oxidized near the surface, and formed hydrothermal sulfuric acid solutions. The mineralogical and chemical changes of the altered rocks were investigated using various methods, and chemical composition of fifty-six samples of the altered rocks were obtained by wet chemical analysis and X.R.F. methods. On the basis of these analyses, it was found that some components such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO, MgO, $K_2O$, $Na_2O$ and $TiO_2$ were mobilized considerably from the original rocks. The formation temperature of the deposits was estimated as higher than $200^{\circ}C$ from fluid inclusion study of samples taken from the Quartz zone. On the basis of the chemical composition data on rocks and minerals and estimated temperatures, the hydrothermal solutions responsible for the formation of the Seongsan dickite deposits were estimated to have the composition: $m_{K^+}=0.003$, $m_{Na^+}=0.097$, $m_{SiO_2(aq.)}=0.008$ and pH=5.0, here "m" represents the molality (mole/kg $H_2O$).

  • PDF

Occurrences and Physicochemical Properties of Japanese Bentonite Deposits (일본 벤토나이트 광상의 부존특성 및 광석의 물리화학적 특성)

  • Song Min-Sub;Koh Sang-Mo;Takagi Tetsuichi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.245-265
    • /
    • 2004
  • This study was to compare the geological occurrences and geneses of the Myogi, Tsukinuno, Dobuyama and Kawasaki bentonite deposits distributed in the Tertiary sedimentary basins of NE Japan, and to compare the mineralogical and physicochemical properties of their bentonites. The Japanese bentonite deposits are mainly distributed in the Green-tuff region which was formed in Neogene. The shape of ore body of the Myogi, Tsukinuno and Kawasaki deposits formed by the diagenesis are layered and stratiform. In contrast to this, the Dobuyama deposit formed by hydrothermal alteration shows the cone shape. The mineralization age of four deposits are 1.8 ~ 21 Ha from Early Miocene to Pliocene. The Dobuyama bentonite with the highest montmorillonite content shows the highest surface area, CEC, MB adsorption, and strengths. The Tsukinuno bentonite with a little high montmorillonite content is characterized by strong alkalinity, high viscosity and swelling. The Kawasaki bentonite, the Na-Ca mixed type, shows higher viscosity and swelling than the Ca-type Dobuyama bentonite. The Myogi bentonite with the lowest montmorillonite content shows the properties of low viscosity, In adsorption, strengths and a little high CEC and surface area. The high CEC and surface area of this deposit is due to the sufficient occurrence of zeolite. A strong dispersion in the Na-type bentonite and a strong flocculation in the Ca-type bentonite took place, and both the types show a slow flocculation with time. The physicochemical properties of the bentonite are mainly controlled by the montmorillonite content, interlayer cations, and impurity minerals such as zeolite. But bentonites inconsistent to this factors are sometimes occurred. This is maybe due to the crystal chemistry such as layer charge of montmorillonite and crystal morphology of montmorillonite such as aspect ratio.

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Bongsang Gold-silver Deposit, Republic of Korea (봉상 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • The Bongsang gold-silver deposit consists of quartz veins that fill along the fault Bone within Cretaceous andesitic lapilli tuff. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I which can be subdivided into early and late depositional stages is main ore mineralization and stage II is barren. Stage I began with deposition of wall-rock alteration minerals and base-metal sulfides, and was deposited by later native silver, Ag-bearing tetrahedrite, polybasite and base-metal sulfides such like pyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 137 to $336^{\circ}C$ and from 0.0 to 10.6 wt.% NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, temperature and sulfur fugacity deduced mineral assemblages of late stage I are $<210^{\circ}C\;and\;<10^{-15.4}$ atm, respectively. Sulfur(3.4%o) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen{2.9%o, 10.3%o(quartz: 7.9%o, 8.9%o, calcite: 2.9%o, 10.3%o)}, hydrogen(-75%o) and carbon(-7.0%o, -5.9%o) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Preliminary Study on the Application of Remote Sensing to Mineral Exploration Using Landsat and ASTER Data (Landsat과 ASTER 위성영상 자료를 이용한 광물자원탐사로의 적용 가능성을 위한 예비연구)

  • Lee, Hong-Jin;Park, Maeng-Eon;Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.467-475
    • /
    • 2010
  • The Landsat and ASTER data have been used in mineralogical and lithological studies, and they have also proved to be useful tool in the initial steps for mineral exploration throughout Nevada mining district, US. Huge pyrophyllite quarry mines, including Jungang, Samsung, Kyeongju, and Naenam located in the southeastern part of Gyeongsang Basin. The geology of study area consists mainly of Cretaceous volcanic rocks, which belong into Cretaceous Hayang and Jindong Group. They were intruded by Bulgugsa granites, so called Sannae-Eonyang granites. To extraction of Ratio model for pyrophyllite deposits, tuffaceous rock and pyrophyllite ores from the Jungang mine used in reflectance spectral analysis and these results were re-sampled to Landsat and ASTER bandpass. As a result of these processes, the pyrophyllite ores spectral features show strong reflectance at band 5, whereas strong absorption at band 7 in Landsat data. In the ASTER data, the pyrophyllite ores spectral features show strong absorption at band 5 and 8, whereas strong reflectance at band 4 and 7. Based on these spectral features, as a result of application of $Py_{Landsat}$ model to hydrothermal alteration zone and other exposed sites, the DN values of two different areas are 1.94 and 1.19 to 1.49, respectively. The differences values between pyrophyllite deposits and concrete-barren area are 0.472 and 0.399 for $Py_{ASTER}$ model, 0.452 and 0.371 for OHIb model, 0.365 and 0.311 for PAK model, respectively. Thus, $Py_{ASTER}$ and $Py_{Landsat}$ model proposed from this study proved to be more useful tool for the extraction of pyrophyllite deposits relative to previous models.