• 제목/요약/키워드: 응축 열전달 계수

검색결과 102건 처리시간 0.022초

낮은 핀관과 Turbo-C 촉진관에서 R245fa의 외부 응축 열전달계수 (External Condensation Heat Transfer Coefficients of R245fa on Low Fin and Turbo-C Tubes)

  • 심윤보;박기정;정동수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.167-175
    • /
    • 2009
  • In this study, condensation heat transfer coefficients(HTCs) of R22, R123, R134a and R245fa are measured on both 26fpi low fin and Turbo-C tubes. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling of $3{\sim}8^{\circ}C$. Test results show that HTCs of the newly developed low vapor pressure alternative refrigerant, R245fa, are $7.8{\sim}9.2%$ and $10.3{\sim}18.6%$ higher than those of R123 for 26fpi low fin tube and Turbo-C tube respectively. For all refrigerants tested, HTCs of Turbo-C enhanced tube are higher than those of 26fpi low fin tube. For the low fin tube, Beatty and Katz's prediction equation yielded 20% deviation for all fluids. The heat transfer enhancement ratio of R245fa on the Turbo-C tube is $5.9{\sim}6.4$ while that of R123 is $5.7{\sim}5.9$. From the view point of environmental safety and condensation heat transfer, R245fa is a long term candidate to replace R123 currently used in centrifugal chillers.

자동차 공조시스템용 평행류형 응축기의 모델링 (Modeling of Parallel Flow Type Condenser for Automotive Air Conditioning System)

  • 김일겸;박우철;이채문
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.29-38
    • /
    • 2004
  • 자동자 공조용 시스템에 사용되는 평행류형 응축기에 대하여 실제 운전조건에서 성능을 예측할 수 있는 모델링을 개발하였다. 모델링에 사용된 방법은 유효도-전달단위수법이고, 국소구간을 나누어 해석하는 국소구간법을 사용하였다. 모델링에 사용된 작동유체는 HFC134a이며, 응축기를 흐르면서 방생하는 냉매의 압력손실에 대한 물성변화를 포함시켜 보다 실제에 가깝게 해석하였다. 모델링에는 공기측과 냉매측의 열전달계수와 압력손실계수에 관한 상관식들을 포함하고 있다. 모델링의 결과는 실험값과 비교하여 비교적 잘 일치한다.

탄화수소계 냉매의 응축 열전달 및 압력강하 특성 (Characteristics of Condensing Heat Transfer and Pressure Drop of HCs Refrigerants)

  • 이호생;이광배;문춘근;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1143-1148
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradient of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than those of R-22 in 12.7 mm and 9.52 mm. This results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

  • PDF

수평 평활관내 R404A와 R152a 냉매 유동의 응축 열전달 계수에 대한 비교 연구 (Comparative Study of Condensation Heat Transfer Coefficients between R404A and R152a Flow in a Horizontal Smooth Tube)

  • 이상용;김만희;이치영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.256-261
    • /
    • 2005
  • In the present experimental study, condensation heat transfer coefficients between R404A and R152a flow in a horizontal smooth tube were compared. The outer and inner diameters of the tube were 9.52 mm and 7.55 mm, respectively, and the heated length was 1045 mm. The mass flux ranged from 150 to 400 $kg/m^{2}s$ and the test section were uniformly heated from 8 to 12. $kW/m^2$. The quality range was from 0.2 to 0.8 at the saturation temperature from 27.3 to $34^{\circ}C$. Experimental condensation heat transfer coefficients increased as the quality and mass flux increased. Modified Dobson and Chato correlation reduced the mean deviation of 5.1% for R404A and 9.4% for R152a than the original correlation$^{(2)}$.

  • PDF

열전달 촉진관에서 HFC32/HFC152a 혼합냉매의 외부 응축열전달계수 (External Condensation Heat Transfer Coefficients of HFC32/HFC152a Mixtures on Enhanced Tubes)

  • 이요한;강동규;김현주;이호생;정동수
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.315-321
    • /
    • 2014
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC152a at various compositions were measured on both 26 fpi low-fin and Turbo-C enhanced tubes, of 19.0 mm outside diameter. All data were taken at the vapor temperature of $39^{\circ}C$, with a wall subcooling of 3~8 K. Test results showed that the HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by mass fraction weighting of the pure component HTCs. Also, the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased, as the wall subcooling increased, which was due to the sudden break-up of the vapor diffusion film with an increase in wall subcooling. Finally, the heat transfer enhancement ratios for mixtures were found to be much lower, than those of pure fluids.

기존모델과 실험자료의 통계적 분석에 의해 유도한 층류 및 난류 막응축에 대한 새로운 자연대류 열전달 관계식 (A New Natural Convection Heat Transfer Correlation for Laminar and Turbulent Film Condensation Derived from a Statistical Analysis of Existing Models and Data)

  • Chun, Moon-Hyun;Kim, Kyun-Tae
    • Nuclear Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.200-209
    • /
    • 1991
  • 수칙표면 위에서 일어나는 충류 및 난류응축 모두에 사용할 수 있는 새로운 반경험적 열전달 관계식을 제안하였다. 본 관계식의 함수 형태는 층류와 난류 막응축 유동에 대한 기존의 대표적 관계식에 근거를 두었고, 한편 본 관계식의 수치계수는 공개된 문헌에서 수집한 실험자료를 사용하여 최소자승법에 의해 결정하였다. 또한, 본 관계식과 기존 7개의 관계식 (즉 층류에 대한 관계식 4개 와 난류에 대한 관계식 3개 )의 성능을 정확도와 적용 범위에 대해서 평가하였다. 그 결과 층류 막응축에 대하여는 Zazuli의 관계식과 본 관계식이 가장 작은 평균 오차를 가져오고, 난류 영역에서는 Kirkbride와 Badger의 관계식과 본 관계식이 가장 작은 평균 오차를 가져오는 것을 보여 준다.

  • PDF

환상유동 영역에서의 수평관내 응축 열전달계수 예측 (Prediction of condensation heat transfer coefficients inside horizontal tube in annular flow regime)

  • 곽경민;배철호;정모;이상천
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.732-742
    • /
    • 1998
  • Prediction method for heat transfer coefficients in a horizontal smooth tube with forced convection condensation is proposed. In this paper, the analogy between momentum and heat transfer was applied to an annular flow regime and the logarithmic velocity distribution is applied to describe the velocity profile within the liquid film. Prediction results are compared with those of experimental ones. The test refrigerants are R113, R22, R134a, R407C(R33/R125/R134a, 23/25/52 wt%), R410A(R32/R125, 50/50 wt%) and R134a+R123(R134a/R123, 85.5/14.5 wt%) which are used under operating conditions in a condenser of air-conditioner. The proposed prediction method shows good agreement with experimental data within$\pm 30%$ for pure refrigerants. For the mixture refrigerants including the ternary mixture refrigerant R407C, condensation heat transfer from this study are higher than those from experiments. By correcting the constant in two-phase frictional multiplier, the predicated heat transfer coefficients become similar to the experimental results.

  • PDF

냉매 R-407c의 수평평골 응축관내 열전달특성에 관한 연구 (Heat transfer characteristics of R - 407C condensing inside smooth horizontal tubes)

  • 오후규;문정욱;노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.144-156
    • /
    • 1997
  • Experimental results for forced convection heat transfer of pure refrigerant and nonrefrigerant mixtures during condensing inside horizontal smooth tubes, double pipe heat exchanger of 7.5 mm ID and 4 000 mm long inside tube, are presented. Pure refrigerant R - 22 and R - 407 c, the mixture of R - 32 + R - 125 + R - 134a (23/25/52, wt %) are used as the test fluids. The ranges of parameters are $114.3{\sim}267.1 kg/(m^2 {\cdot} s)$ of mass velocity, <0$\sim$1.0 of quality. The vapor pressure, vapor temperature and tube wall temperature were measured. Using these data, the local and average heat transfer coefficients for the condensation are obtained. At the same given experimental conditions, the condensation heat transfer coefficients for NARMs R - 407c were lower than those for the pure refrigerant of R - 22. Local heat transfer characteristics for R - 407c were different from pure refrigerant R - 22. The condensaheat transfer coefficients for R - 407c and R - 22 increased with mass velocity. Based on the data a prediction method was presented for the calculation of dimensionless average heat transfer coefficient.

  • PDF

물-증기 동방향 성층이상 유동에서의 응축 열전달 계수 (Condensation Heat Transfer Coefficient in Horizontal Stratified Cocurrent Flow of Steam and Cold Water)

  • 김효정
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.618-624
    • /
    • 1986
  • 본 논문에서는 최근까지 제시된 동방향 성층이상유동의 직접접촉응축열전달계 수에 대한 여러가지 상관관계식들을 검토하고 실험결과와 비교하여 적절한 관계식을 제시하고자 한다.