• Title/Summary/Keyword: 응력 함수

Search Result 760, Processing Time 0.024 seconds

Estimation on Unsaturated Characteristic Curves of Tailings obtained from Waste Dump of Imgi Mine in Busan (부산 임기광산 폐석적치장 광미의 불포화 특성곡선 산정)

  • Song, Young-Suk;Kim, Kyeong-Su;Jeong, Sueng-Won;Lee, Choon-Oh
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • To investigate the unsaturated characteristics of the tailings obtained from the waste dump at Imgi mine, matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured result, Soil Water Characteristic Curves (SWCC) were estimated by van Genuchten model. According to the unsaturated soil classification method, the tailings of the waste dump correspond to clayey sand. As a result of Suction Stress Characteristic Curve (SSCC) by Lu and Likos model, SSCC has a shape of S which is similar to SWCC. The hysteresis phenomenon occurred in SSCCs, which means the suction stress of drying path is larger than that of wetting path in the same effective degree of saturation. The effective stress of unsaturated soil is equal to that of saturated soil when matric suction is less than Air Entry Value (AEV). However, the effective stress of unsaturated soil is larger than that of saturated soil when matic suction is more than AEV. Meanwhile, unsaturated hydraulic conductivity by van Genuchten model decreased with increasing matric suction, and the hydraulic conductivity of drying path is larger than that of wetting path.

Critical Angle Analysis of Elliptical Corner Cracks in Mechanical Joints by Weight Function Method and Finite Element Analysis (가중함수법과 유한요소해석에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 임계 경사각 해석)

  • Heo, Sung-Pil;Yang, Won-Ho;Ko, Myung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • There is the high possibility of crack initiation from mechanical joints, which are widely used in aircraft fuselages, due to the development of stress concentration and contact pressure. In this paper, the mixed-mode stress intensity factors at the surface and deepest points of an inclined quarter elliptical corner crack in mechanical joints are analyzed by the weight function method. The coefficients included in the weight function are obtained by finite element analyses for reference loadings. Critical angle at which mode I stress intensity factor becomes maximum is determined by analyzing the variation of stress intensity factors along incline angle of crack and the effects of the amount of clearance and crack depth on the critical angle are investigated.

Effect of Stress State and Moisture Condition on the Resilient Behavior of Subgrade Soils in Test Roads (응력상태와 함수비에 대한 시험도로 노상토의 회복탄성거동)

  • Park, Seong-Wan;Lee, Chi-Hun;Hwang, Kyu-Young
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.47-56
    • /
    • 2007
  • Resilient characteristics on unbound pavement materials have been adopted for design and nonlinear analysis of pavement structure under traffic loadings. However, relatively few studies have been done on the nonlinear resilient behavior of unbound materials in Korea. In addition to that, only the limited information is available for estimating the resilient modulus values on subgrade soils. In this study, a laboratory resilient-deformation test under repeated loadings is performed in order to establish the nonlinear characteristics of unbound subgrade soils in test roads. Then, a constitutive model that correlates the resilient modulus with moisture and stress state from field condition is proposed respectively. The results from all procedures are presented in this paper. Finally, a comparative analysis is conducted to identify the proper models in the stress dependent modulus and seasonal moisture condition of subgrade soils in test roads respectively.

  • PDF

Stress Distribution under a Geogrid-Reinforced Soil Pad (지오그리드로 보강한 성토지반의 응력분포)

  • 이규진;신방웅;신은철
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.87-91
    • /
    • 2001
  • 얕은 기초의 침하는 기초에 가해지는 상재 하중의 지반에 전달될 때 분포되는 응력의 특성과 크기에 관련되어 일어난다. 일반적으로 지반의 보강재로 사용되는 지오그리드로 두께가 작은 토체를 보강하면 지중에 전달되는 응력을 재분포시켜 감소시킨다. 이 논문에서는 현장시험을 통하여 여러 층의 지오그리드로 토체를 보강시 토체 상부에 가해지는 원형 등분포 하중하에서 토체의 응력 분포를 측정하였다. 인천국제 공항 건설 현장의 준설 매립 구간에서 행하여진 이 시험을 통하여, 지오그리드로 보강된 토체의 하중 분포는 기초에 가해지는 하중 강도와, 보강재 포설층수, 토체의 두께의 함수로 나타낼 수 있다.

  • PDF

A Study on the Undrained Deformation Characteristics of Remoulded Marine Clay (재성형(再成形)한 해성점토(海成粘土)의 비배수(非排水) 변형특성(變形特性)에 관(關)한 연구(硏究))

  • Yoon, Hyun Jung;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.309-323
    • /
    • 1985
  • The Paper describes the observed behaviour in the undrained triaxial condition of marine clays remoulded at various different levels of factors, to find out the effects of restricted factors on the stress-strain characteristics. The conventional triaxial compression tests $({\sigma}1>{\sigma}2={\sigma}3)$ were carried out on the 50mm in diameter and 100mm long cylindrical specimens of Gun-san bay mud under controlled various moisture content, density, axial strain rate and passing on No. 200 sieve. Significant conclusions from this study are; 1. The compressible deviator stress at failure of pure marine clay was observed to increase with the decrease of moulding moisture content. 2. The compressible deviator stress at failure increased with the increasing of moulding dry density. 3. The interaction between moisture content and density on the stress-strain characteristics of marine clay was remarkedly significant, as the result of factorial experimental method. 4. The effect of axial strain rate on stress-strain behaviour was unsignificant in marine clay and but the secant moduli could be pronounced on a slight decreasing with increase of the strain rate. 5. With the increasing of the passing on No. 200 sieve, the deviator stress increased regularly. 6. The multiple regression equation could be modeled for the prediction of stress or strain and the comparison with experimental results relatively proved the accuracy.

  • PDF

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.

Stress Intensity Factors of a Sheet with an Eccentrically Inclined Crack Subjected to Pure Bending (편심 경사균열 을 가진 판 이 순수굽힘 을 받는 경우의 응력확대계수)

  • 최선호;조상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.18-23
    • /
    • 1985
  • In the fracture mechanics, the determination of the stress intensity factor value is vital for the prediction of a material fracture behavior. So many data concerning to the S.I.F. have been presented by many investigations to meet endless requrement. In this paper, the stress intensity factors of a sheet with an eccentrically inclined crack subjected to the pure bending moment were investigated theoretically by using of the complex mapping function to determine the Muskelishvili's comlex stress functions. Moreover, the theoretical value was compared with the result obtained from photoelastic esperiment. As a result, it was confirmed that both values coincided with satisfactorily within the margin of 2-3% devition; The results theoretically derived are right.

Effect of Thermophysical Properties on Stress Transfer Function ofr Thermal Fatigue Analysis (열피로 해석시 응력전달함수에 미치는 열적 재료 성질의 영향)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Park, Jong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.172-179
    • /
    • 1996
  • For mechanical systems operating at high tempertature, thermal fatigue phenomenon has been recognized as a major cause of mechanical component failures. To evaluate cumulative fatigue damage as a conesquence of thermal fatugue on real time, the stress tranfer function(Green's function) approach is popularly used. The objective of this paper is to investigate the effect of thermophsical properties on the stress tranfer function. For this purpose a modified Green's function approach considering temperature-dependent thermophysical properties is proposed. Two case studies were performed and the proposed approach agrees well with full finite element analysis.

An Analysis of Viscoelastic Problems by Boundary Element Method (경계요소법에 의한 선형 점탄성체의 해석)

  • 이상순;조덕상;손용수
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.69-75
    • /
    • 1994
  • The procedure for the stress and displacement analysis of realistic viscoelastic materials by time domain boundary element method(BEM) has been discussed. The fundamental solutions and stress kernels have been obtained using the elastic-viscoelastic correspondence principle. The relaxation function is expanded in a sum of exponentials and the transformed fundamental solutions and stress kernels are inverted numerically into real time space. The proposed procedure requires a small computational effort and it is applicable in time domain boundary element analysis of realistic viscoelastic problems. Numerical results of example problem show the effectiveness and applicability of the proposed method.

  • PDF

A study of ILM bridge optimazation using Genetic Algorithms (유전자 알고리즘을 이용한 ILM교량의 최적설계 연구)

  • Han, Tae-Yoen;Lee, Gye-Hee;Yoon, Eui-Tack;You, Sang-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.717-720
    • /
    • 2010
  • 본 논문에서는 ILM 교량의 특성상 압출 시 응력이 발생하며, 이러한 응력의 발생위치는 본구조물의 캔틸레버화가 되었을 시 나타나게 된다. 이러한 응력을 줄이기 위하여 ILM 교량의 기본설계 과정을 유전자 알고리즘 기법을 이용하여 단면의 형고에 변화를 주어 반복수행 함으로써 최적설계를 도출해 내는 연구를 수행하였다. 유전자 알고리즘을 통하여 교배를 시켜서 세대가 올라갈수록 모멘트는 줄어들고 목적함수는 올라가는 진행 과정을 보여 줌으로써 최적화 과정을 표현하였고, 단면의 형고를 바꿔 줌으로써 ILM 교량의 최적화를 확인할 수가 있었다. 본 연구에서 수행한 유전자 알고리즘을 이용한 최적화 방법을 보여주려고 한다.

  • PDF