• Title/Summary/Keyword: 응력장과 변위장

Search Result 130, Processing Time 0.023 seconds

Behavior of Stress and Deformation Generated by Repair Welding under Loading (공용중 보수용접에 의한 용접부의 응력 및 변형의 거동 - 인장력 작용중 균열보수용접에 의해 생기는 응력 및 변형의 거동 -)

  • Chang, Kyong-Ho;Lee, Sang-Hyong;Jeon, Jun-Tai
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.269-279
    • /
    • 2000
  • It is much expected that steel bridges, which have been damaged by increase of vehicle load and corrosion, need repair or strengthening. In this paper, the stress generated by repair welding under loading are analyzed by three dimensional elasto-plastic analyses. The longer and deeper repair weld line bocemes, the larger the magnitude of transient stress becomes. The magnitude of transient stress generated by repair welding under loading $({\sigma}_y/3,\;{\sigma}_a)$ is similar to summation of stresses generated by repair welding and loading. The longer repair weld line ratio(1/b) becomes, the larger the magnitude of transient stress generated by repair welding under loading bocomes. And, the longer repair weld line ratio(1/b) becomes, the larger the magnitude of in-plane displacement generated by repair welding under loading$({\sigma}_y/3,\;{\sigma}_a)$.

  • PDF

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

A Study on the Determination of Stress Intensity Factors in Orthotropic Plane Elastic Bodies (직교이방성 평면탄성체의 응력확대계수 결정에 관한 연구)

  • Jin, Chi Sub;Lee, Hong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.19-27
    • /
    • 1993
  • Recent work in the mechanics of fracture points out the desirability of a knowledge of the elastic energy release rate, the crack extension force, and the character of the stress field surrounding a crack tip in analyzing the strength of cracked bodies. The objective of this work is to provide a discussion of the energy rates, stress fields and the like of various cases for anisotropic elastic bodies which might be of interest. Reinforced concrete, wood, laminates, and some special types of elastic bodies with controlled grain orientation are often orthotropic. In this paper, determination of the stress intensity factors(SIFs) of orthotropic plane elastic body using crack tip singular element and fine mesh in near the crack tip is performed. A numerical method in this paper was used by displacement correlation method. A numerical example problem of an orthotropic cantilevered single edge cracked elastic body subjected to shear loading was analyzed, and the results of this paper are in good agreement with those of the others.

  • PDF

Lateral-Torsional Post-Buckling Analyses of Thin-Walled Space Frames with Non-symmetric Sections (비대칭단면을 갖는 박벽 공간뼈대구조의 횡-비틂 후좌굴 유한요소해석)

  • Park, Hyo Gi;Kim, Sung Bo;Kim, Moon Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.153-165
    • /
    • 1999
  • In order to trace the lateral-torsional post-bucking behaviors of thin-walled space frames with non-symmetric cross sections, a geometrically non-linear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for non-symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of thin-walled space frame element are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines and incremental member forces.

  • PDF

Stability Analysis of Unsymmetric Tapered Thin-walled Beams (비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성 해석)

  • 김성보;구봉근;한상훈;정경섭
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.197-207
    • /
    • 1998
  • 전단변형 효과를 무시하는 경우에 비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성 해석을 위한 일반이론을 유도한다. 비대칭 선형 변단면의 임의점을 통과하는 부재축과 단면의 주축의 방향과 무관하고 부재축과 직각을 이루는 두 개의 좌표축을 도입하여 직각좌표계를 정의한다. 정의된 좌표축을 기준으로 유한한 회전각의 2차항을 고려하는 변위장을 도입하여 연속체에 대한 가상일의 원리로부터 탄성변형에너지, 그리고 초기응력에 의한 포텐셜에너지를 유도한다. 이를 이용하여 비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성해석을 위한 평형방정식을 제시한다. 3차 Hermitian 다항식을 변위파라미터의 형상함수로 사용하여 박벽 공간 보의 탄성강도 및 기하강도행렬을 상정할 뿐만 아니라, 단면의 좌표축에 상관없이 임의의 위치에 작용하는 하중에 대한 하중보정강도행렬(load-correction stiffness matrix)을 제시한다. 본 이론 및 방법의 타당성을 검증하기 위하여 수치해석을 수행하고 문헌의 결과 및 쉘요소를 사용한 해석결과와 비교하여 본 이론의 정당성을 입증한다.

  • PDF

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

A Study on the Crack Control of Retaining Wall of Mass Concrete Structure (지하옹벽 매스콘크리트 구조물의 균열제어에 관한 연구)

  • 장동일;채원규;조광현;김광일;손영현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.289-294
    • /
    • 1997
  • 매스콘크리트 구조물에서는 이미 경화된 콘크리트가 새로이 타설된 콘크리트의 변형을 제한하여 시공직후에 부재의 길이방향에 수직한 균열이 발생하는 경우가 자주 보고 되고 있다. 이 균열은 먼저 타설된 바닥에 대하여 벽체의 변위가 제한될 때 구속인장응력에 의해 발생된다. 이러한 균열의 발생원인은 몇 가지로 살펴볼 수 있는데, 그 하나는 먼저 타설한 바닥 콘크리트와 새로 타설한 벽체 콘크리트와의 수화열 발생의 차이에 의한 것이며, 두번째 이유로 바닥과 벽체사이의 건조수축의 차이를 들 수 있다. (중략)

  • PDF

AFUNCTIONALGRADIENT-SIMULATEDMULTILAYERBENDERACTUATOR (경사기능특성을 모사한 적층 벤더 액츄에이터 특성)

  • Jeong, Soon-Jong;Koh, Hung-Huck;Ha, Mun-Su;Ha, Dea-Su;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.802-805
    • /
    • 2004
  • 압전 액츄에이터는 다른 종류의 액츄에이터와 비교할 때 높은 강성, 빠른 응답성의 우수한 특성을 가지고 있다. 벤더형 액츄에이터는 높은 변위의 장점을 가지나 높은 전기장과 기계적 부하인가시에는 내부 응력이 증가하므로서 신뢰성이 감소한다는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 여러 방법으로 내부 응력을 줄이려는 시도가 있으며 그중 하나는 경사기능 소재나 경사기능 구조를 가지는 액츄에이터의 개발이다. 본 연구에서는 경사기능 특성을 모사한 액츄에이터 구조를 제작하고 그 특성을 조사하였다. 두 가지의 압전상수 d31= - 220 pC/N, d31 =- 100 pC/N를 가지는 세라믹층을 적층하여 벤더형 액츄에이터의 특성을 관찰하였다. 그 결과 두 종류의 세라믹층으로 적층한 액츄에이터가 한가지 특성의 세라믹으로 제작한 액츄에이터 보다 전압인가시 20%이상의 우수한 변위 특성을 나타내었다. 이러한 변화는 내부 응력의 감소에 기인한 것으로 예상된다.

  • PDF

A Thermal Stress Analysis of Beams with Out-of-Plane Warping (면외 워핑함수를 고려한 보 구조물의 기계 및 열응력 해석)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In this paper, a methodology, which is able to predict the thermal stresses accurately yet efficiently, is presented for beam structures via Saint-Venant's principle. In general, higher-order beam theories have been known to be effective for the prediction of thermal stresses. In contrast to this, we propose the method to predict the thermal stresses of beam structures by post-processing the classical beam theory via Saint-Venant's principle. The approach includes an out-of-plane warping displacement to account for the through-the-thickness thermal deformation. With this, one can accurately recover the thermal stresses as compared to the elasticity solutions. In fact, they are identical for the beams made of isotropic materials. The effect of out-of-plane warping is also investigated, it turns out that the effect is negligible in mechanical stress analysis but not in thermal stress analysis.

Evaluation of Thin Film Residual Stress through the Theoretical Analysis of Nanoindentation Curve (나노 압입곡선의 이론적 분석을 통한 박막의 잔류응력 평가)

  • Lee, Yun-Hee;Jang, Jae-Il;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1270-1279
    • /
    • 2002
  • Residual stress is a dominant obstacle to efficient production and safe usage of device by deteriorating the mechanical strength and failure properties. Therefore, we proposed a new thin film stress-analyzing technique using a nanoindentation method. For this aim, the shape change in the indentation load-depth curve during the stress-relief in film was theoretically modeled. The change in indentation depth by load-controlled stress relaxation process was related to the increase or decrease in the applied load using the elastic flat punch theory. Finally, the residual stress in thin film was calculated from the changed applied load based on the equivalent stress interaction model. The evaluated stresses for diamond-like carbon films from this nanoindentation analysis were consistent with the results from the conventional curvature method.