• Title/Summary/Keyword: 응력보정계수

Search Result 62, Processing Time 0.019 seconds

An Analytical Study to evaluate Existing Stress of Steel Structural Member (철골구조물의 존재응력 추정에 관한 해석적 연구)

  • Kim, Kap Sun;Shin, Eui Gyun;Kim, Woo Bum;Chung, Soo Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.301-309
    • /
    • 1999
  • The purpose of this study is to develop a method to deduce existing stress of steel member in inelastic range. Based on the previous experimental study, modified factor method considering the local plastification due to stress concentration was proposed. Finite element analysis was performed to investigate the stress distribution around hole and the results of the finite element analysis were compared with those from the Hole Drilling Method in elastic-plastic range. As a result of applying a modified factor method, proposed method shows very good approximation of 2% error for exact value of stress in the plastic range.

  • PDF

Numerical Investigation of Frictional Effects and Compensation of Frictional Effects in Split Hopkinson Pressure Bar (SHPB) Test (수치해석을 이용한 SHPB 시험의 마찰영향 분석과 보정에 대한 연구)

  • Cha, Sung-Hoon;Shin, Hyun-Ho;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.511-518
    • /
    • 2010
  • The split Hopkinson pressure bar (SHPB) has been widely used to determine the mechanical properties of materials at high loading rates. However, to ensure test reliability, the source of measurement error must be identified and eliminated. During the experiment, specimens were placed between the incident and the transmit bar. Contact friction between the test bars and specimen may cause errors. In this study, numerical experiments were carried out to investigate the effect of friction on the test results. In the SHPB test, the stress measured by the transmitted bar is assumed to be the flow stress of the test specimen. However, performing numerical experiments, it was shown that the stress measured by the transmit bar is axial stress components. When the contact surface is frictionless, the flow stress and axial stress of the specimen are approximately equal. On the other hand, when the contact surface is not frictionless, the flow stress and axial stress are no longer equal. The effect of friction on the difference between the flow stress and axial stress was investigated.

Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints according to Post-Processing in Weld Bead Toes (용접지단부의 후처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Hong, Sung Wook;Kyung, Kab Soo;Choi, Dong-Ho;Yong, Hwan Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.701-713
    • /
    • 2000
  • In this study, the 4-point bending test been performed in order to estimate effect of grinding on fatigue characteristics quantitatively for as-welded specimen, grinding specimen & TIG-dressing specimen for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength at $2{\times}106$cycles of grinding specimen and TIG-dressing specimen has been increased compared with as-welded specimen and satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC. As a result of beachmark test, fatigue cracks on all specimens have occurred at several points where stress

  • PDF

Evaluation of correlation between Strain mudulus (Ev2) and Deformation modulus (ELFWD) Using Cyclic Plate loading Test and LFWD (소형 FWD와 반복평판재하시험에서의 변형계수(Ev2)와의 상관관계 평가)

  • Choi, Chan-Yong;Lee, Sung Hyok;Bae, Jae Hun;Park, Doo Hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.33-41
    • /
    • 2011
  • In this study, it conducted a compaction quality control test in 29 domestic construction sites and investigated the relationship between classical method (Cyclic Plate bearing test) and LFWD test with subgrade materials which consist in sandy soil and gravelly soil. According to the test results, the most of soil types were mostly satisfied with specification criterion and gravelly soils were easily satisfied with values over 3 times greater than specification criterion. In term of the correlation relation of soil modulus with the two compaction quality control test methods, it is shown that the sandy soil types were a good correlation, while gravelly soil types with a high stiffness materials were indicated less correlation. After the compensation for stress condition, a linear regression for elastic modulus were higher correlation.

Load carrying capacity Evaluation Considering the Structural Characteristics of Bridge Bearing (교량받침의 거동특성을 고려한 내하력 평가)

  • Park, Kil-Hyun;Yang, Seung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.209-216
    • /
    • 2003
  • Load carrying capacity evaluation is very important element in maintenance of bridge. There are several reasons about differences in deflection caused by loading test and structural analysis. Especially when we do modeling uniformly without considering real structural characteristics of support, this problem can be more deepened. This computes modification factor high so we may evaluate the load carrying capacity more than fact. In this study, we do structural analysis nearing real structure with negative bending moment of support that computes considering structural characteristics of support, and then evaluate load carrying capacity.

Prediction of burial depth over time evolution at seabed (해저면에서 시간변화에 따른 매몰심 변화 예측)

  • Seungho Lee;Hyoseob Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.476-476
    • /
    • 2023
  • 해저면에 놓인 물체는 주변의 국소 흐름 변화에 의해 해저면 전단응력이 국부적으로 변화하는 과정에서 침식과 퇴적이 발생하게 되면서 해저면 지형의 변화에 의해 움직임이 발생한다. 이때 물체의 크기, 무게, 밀도와 형상에 따라 구름, 미끄러짐, 액상화 현상 또한 동반 될 수 있다. 본 연구에서는 해저면에 놓인 물체의 시간변화에 따른 매몰심 변화를 예측하고자 하였다. 물체는 원형 단면의 실린더 형태로 고려했다. 시간변화에 따른 매몰심 변화를 평형 매몰심으로의 접근속도에 관련된 인수와 매몰심 변화량으로 기본방적식을 구성하였고, 이를 유한 차분식으로 수립하였다. 최종 평형 매몰심 계산은 Friedrichs et al.(2016)의 경험식을 사용하였다. 앞선 연구에서 김효섭 등(2016)은 시간에 따른 세굴심 변화 모델 STEP-K를 제시한 바 있다. 시간변화에 따른 연직방향 실린더 주변에서의 국소세굴심을 예측하는 기법으로, 해저면에 놓인 수평방향 물체 주변의 매몰심 발달을 예측하기 위해 매몰 발생에 대한 시간의 척도를 새롭게 제안하였다. STEP-K에서 사용했던 KC수를 대신해 흐름-단주기 파랑 공조시의 해저면의 전단응력을 대표할 수 있는 대표전단응력을 사용할 수 있게 하였다. 보정계수를 통해 현장 또는 실험실 단위의 자료가 가용한 경우 식을 보정할 수 있다. 제안한 매몰심 예측기법은 Elmore et al.(2007)의 매몰실험 관측자료를 활용하여 보정하였다. 결과적으로 보정자료에 대한 시간에 따른 매몰심의 변화양상을 잘 재현하였으며, 향후 우리나라 해양환경 자료를 활용한 보정을 통해 적용성을 높일 수 있을 것으로 기대된다.

  • PDF

An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints (TIG처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Jung, Young Hwa;Kyung, Kab Soo;Hong, Sung Wook;Kim, Ik Gyeom;Nam, Wang Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.617-628
    • /
    • 2000
  • In this study, the 4-point bending test has been performed in order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength of as-welded specimens has been satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC, and fatigue strength at $2{\times}106cycles$ of TIG-dressing specimens has been increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks have been occurred at several points, where the radius of curvature and flank angle in the weld bead toes are low, and grown as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has been closely related to the flank angel and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has been largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks (두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1521-1528
    • /
    • 2012
  • The present paper provides the elastic stress intensity factors (SIFs) and the crack opening displacements (CODs) of a thick-walled pipe with a slanted axial through-wall crack. For estimating these elastic fracture mechanics parameters, systematic three-dimensional elastic finite element (FE) analyses were performed by considering geometric variables, i.e., thickness of pipe, reference crack length, and crack length ratio, affecting the SIFs and CODs. As for loading condition, the internal pressure was considered. Based on the FE results, the SIFs and CODs of slanted axial through-wall cracks in a thickwalled pipe along the crack front and the wall thickness were calculated. In particular, to calculate the SIFs of a thick-walled pipe with a slanted axial through-wall crack from those of a thick-walled pipe with an idealized axial through-wall crack, a slant correction factor representing the effect of the slant crack on the SIFs was proposed.

Bond Characteristics of High-Strength Light-Weight Concrete (고강도 경량 콘크리트의 부착특성)

  • Shin, Sung-Woo;Lee, Kwang-Soo;Choi, Myung-Shin;Kim, Hyun-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.77-84
    • /
    • 1999
  • Recently, it is increased the use of High-Strength Light-Weight Concrete(HLC) in the high-rise buildings and mega-structures. But there are a few research on the bond behavior of HLC, so it need to study about that. The present study was performed to investigate the bond characteristics of HLC. Major test variables include concrete compressive strength(f'c), concrete cover(c), bond length (${\ell}_{db}$), and bar diameter($d_b$). Test results indicate that the bond stress of HLC is increased with the increment of $\sqrt{f'_c}$ and concrete cover, bond stress is decreased with increment of bond length and bar diameter. And the final failure mode such as splitting or pullout failure is significantly affected by the concrete cover to bar diameter ratios(C/$d_b$). Test results were compared with ACI code and other proposed equations. The bond stress of HLC is higher than that of normal-strength normal-weight concrete, but lower than that of high-strength normal-weight concrte. Considering the present test results, modification factor(${\lambda}$= 1.3) of bond length in ACI 318-95 code for light-weight concrete is may have to be reviewed to apply to HLC.

Correction for Membrane Penetration Effect during Isotropic Unloading and Undrained Cyclic Shear Process (등방제하과정과 반복전단과정에서의 멤브레인 관입량 및 보정식에 대한 실험적 고찰)

  • Kwon, Youngcheul;Bae, Wooseok;Oh, Sewook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.201-207
    • /
    • 2006
  • Soil tests are generally conducted using a membrane to measure a pore water pressure. However, it has also been recognized that the membrane penetrates into the specimen by the change of the confining pressure, and it results in the erroneous measurement in the pore water pressure and the volumetric strain. This study examined the effectiveness of the correction equation of the membrane penetration on the basis of the experimental data acquired during the isotropic unloading and the cyclic shear process using the hollow cylindrical shear test equipment. The results showed that the membrane penetration by the correction equation could be overestimated when the mean effective stress was lower than 20kPa in this study. The limitations originated from the sudden increase near the zero effective stress, and in order to prevent the overestimation in low effective stress condition, the use of the constant a was proposed in this study. Furthermore, the correction equation for the membrane penetration had to be applied carefully when the initial relative density was high and the density changes were occurred by the relocation of the soil particle by the liquefaction.