• Title/Summary/Keyword: 응력매개변수

Search Result 225, Processing Time 0.027 seconds

Nonlinear Consolidation Model Using an Extended Power Function (확장멱함수모형을 이용한 비선헝 압밀속도 모형의 개발)

  • 원정윤;장병욱
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.181-190
    • /
    • 1998
  • One-Dimensional Nonlinear Consolidation Model(NCM) ivas developed by using an Extended Power Function Model, which could represent the compressibility of soils. A nonlinear finite element program for NCM was developed to analyze the porewater pressure dissipation and the settlement of saturated soils. Parameters used in compressibility model could be easily obtained from conventional oedometer test data. This model has been applied to Yansan-Mulgum area for the comparison with the results of CONSOL program and that of Terzaghi theory. A Good The rates of consolidation predicted by this model and CONSOL were faster than that of conventional Tergaghi theory, for they consider the nonlinear characteristics of soils. Consolidation curves of this model were located between Terzaghi and CONSOL curves. Consolidation curves near drainage boundary, where effective stress valied rapidly, seemed to reflect the variations of compressibility of sails. Consolidation curves near drainage boundary obtained from this model were composed of two parabolic curves. Intersection of the parabolic curves occurred when effective stress reached the value of preconsolidation stress. Moreover, thin model could be used to represent the effect of magnitude of applied load. whereas CONSOL and Terazghi theory could not.

  • PDF

Development of a Nonlinear Concrete Model for Internally Confined Hollow Members Considering Confining Effects (구속효과를 고려한 내부 구속 중공 CFT 부재의 비선형 콘크리트 모델 개발)

  • Han, Taek Hee;Youm, Eung Jun;Han, Sang Yun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • There is a growing range of applications for concrete-filled steel tube (CFT) member because of its superior performance. But a CFT member may be uneconomical or has weight problems because it is fully filled with concrete. In this study, a new type of member, called internally confined hollow (ICH) CFT member, was developed to solve the high cost and weight problems of the CFT member. To determine stress-strain model of the concrete in an ICH CFT column, possible failure modes of an ICH CFT column were suggested and confining pressure was derived from equilibriums for each failure mode. From the derived equations, a computer program was coded and parametric studies were performed for some examples. Analytical results showed that internally confined concrete has enhanced strength and ductility compared with those of unconfined or biaxially confined concrete.

Bending Performance Evaluation of Concrete Filled Tubular Structures With Various Diameter-thickness Ratios and Concrete Strengths (콘크리트 충전강관 구조의 직경-두께비 및 콘크리트 강도 변화에 따른 휨 성능 평가)

  • Lee, Sang-Youl;Park, Dae-Yong;Lee, Sang-Bum;Lee, Rae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.223-230
    • /
    • 2009
  • In this study we deal with bending behaviors of a concrete filled tubular(CFT) with various diameter-thickness ratios and concrete strengths. In finite element analysis using a commercial package(LUSAS), the bonding effect between concrete and steel in CFT structures is modeled by applying a joint element for the bonding surface. In order to consider the nonlinearity of concrete and steel tubes, stress-strain curves of the concrete and steel are used for the increased stresses in a plastic domain. The numerical results obtained from the proposed method show good agreement with the experimental data from load-displacement curves of a steel tube under distributed loads. Several parametric studies are focused on structural characteristics of CFT under bending effects for different diameter-thickness ratios and concrete strengths.

Failure Study for Knee Joint Through 3D FE Modeling Based on MR Images (자기공명영상 기반 3차원 유한요소모델링을 통한 무릎관절의 파손평가)

  • Bae, Ji-Yong;Park, Jin-Hong;Song, Seong-Geun;Park, Sang-Jin;Jeon, In-Su;Song, Eun-Kyoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.533-539
    • /
    • 2009
  • In this study, the femur, the tibia, the articular cartilage and the menisci are three dimensionally reconstructed using MR images of healthy knee joint in full extension of 26-year-old male. Three dimensional finite element model of the knee joint is fabricated on the reconstructed model. Also, the FE models of ligaments and tendons are attached on the biologically suitable position of the FE model. Bones, articular cartilages and menisci are considered as homogeneous, isotropic and linear elastic materials, and ligaments and tendons are modeled as truss element and nonlinear elastic springs. The numerical results show the contact pressure and the von Mises stress distribution in the soft tissues such as articular cartilages and menisci which can be regarded as important parameters to estimate the failure of the tissues and the pain of the patients.

Analysis of Soil Resistance on Laterally Loaded Piles Considering Soil Continuity (지반의 연속성을 고려한 말뚝의 수평지반저항력 산정)

  • Kim, Young-Ho;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4C
    • /
    • pp.175-183
    • /
    • 2010
  • The load distribution and deflection of large diameter piles are investigated by lateral load transfer method (p-y curve). The emphasis is on the effect of the soil continuity in a laterally loaded pile using 3D finite element analysis. A framework for determining a p-y curve is calculated based on the surrounding soil stress. The parametric studies that take into account the soil continuity are also presented in this paper. Through comparisons with results of field load tests, it is found that the prediction by the present approach is in good agreement with the general trend observed by in situ measurements and thus, represents a significant improvement in the prediction of a laterally loaded pile behavior. Therefore, a present study considering the soil continuity would be more economical pile design.

Prediction of Rheological Properties of Cement-Based Pastes Considering the Particle Properties of Binders (결합재의 입자특성을 고려한 시멘트 기반 2성분계 페이스트의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.111-119
    • /
    • 2023
  • Recently, a variety of new cement-based materials have been developed, and attempts to predict the properties of these new materials are increasing. In this study, we aimed to predict the rheological properties of binary blended pastes. The cementitious materials used in the study included Portland cement (PC), fly ash (FA), blast furnace slag (BS), and silica fume (SF). The three binder components, fly ash, blast furnace slag, and silica fume, were blended with cement as the foundational composition. We predicted the yield stress and plastic viscosity of the pastes using the YODEL (Yield stress mODEL) and Krieger-Dougherty's equation. The predictive model's performance was validated by comparing it with experimental results obtained using a rheometer. When the rheological properties of the binary blended paste were predicted by reconstructing the properties and parameters used to predict the individual materials, it was evident that the predictions made using the proposed method closely matched the experimental results.

Design Optimization for the Magnetic Engine Valve Actuator (엔진 밸브 자기 구동기의 설계 최적화)

  • Soh, Hyun-Jun;Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.584-589
    • /
    • 2009
  • As the automobile energy efficiency stands out an important matter of interest, the magnetic engine valve system receives attention. It has an advantage of no engine power leakage in opening and closing the valve. Moreover, it generates much bigger force than the piezo actuator system, so it can be a good alternative system of the cam and camshaft system. However, since the valve system is not light enough, it is necessary to make its weight reduce. In this study, topology optimization is applied to find the optimal shape of the armature in a magnetic valve system combined with the finite element analysis for the magnetic field analysis. The result is used to obtain a concept design. The adjoint variable method is employed in order to calculate the design sensitivity of the magnetic driving force in the armature component mostly to reduce the computational time during the repeated sensitivity calculation. The sequential linear programming is employed for the optimization algorithm.

Buckling Strength of Orthogonally Stiffened Steel Plates under Uniaxial Compression (일축압축을 받는 직교로 보강된 판의 좌굴강도)

  • Choi, Dong Ho;Chang, Dong Il;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.731-740
    • /
    • 1998
  • Orthogonally stiffened steel plates are used for orthotropic steel decks of long-span bridges because of high degree of flexural and torsional resistances and good load-distribution behavior. An analytic study is presented for evaluating the buckling strength of orthogonally stiffened plates subjected to uniaxial compression. By using the plate theory, the buckling stress under overall and partial buckling modes, is derived. Parametric studies are performed to show the effects of the stiffness and the number of transverse and longitudinal ribs on the buckling strength. The results show quantitatively strong influence of stiffness and spacing of longitudinal and transverse ribs.

  • PDF

A study on ground surface settlement due to groundwater drawdown during tunnelling (터널 굴착시 지하수 저하로 인한 지반침하에 관한 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.361-375
    • /
    • 2007
  • This paper presents the results of investigation on tunnelling-induced ground surface settlement characteristics in water bearing ground using finite element (FE) stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of the coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as rock type, thickness of soil layer, permeability of shotcrete lining, among others. The results indicate that the tunneling-induced groundwater drawdown results in a deeper and wider settlement trough than without groundwater drawdown, and that the Error function approach does not yield satisfactory result in predicting a settlement profile. The results of analysis are summarized so that the relationship between the settlement and the influencing factors can be identified.

  • PDF

Determination of Effective Buckling Length of Plane Frames using Elastic and Inelastic System Buckling Analysis (탄성 및 비탄성 좌굴 고유치해석을 이용한 강뼈대구조의 유효좌굴길이)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.169-179
    • /
    • 2005
  • An improved method for evaluating effective buckling lengths of beam-column members in plane frames is newly proposed based on system inelastic buckling analysis. To this end, the tangent stiffness matrix of be am-column elements is first calculated using stability functions and then the inelastic buckling analysis method is presented. The scheme for determining effective length of individual members is also addressed. Design examples and numerical results ?uc presented to show the validity of the proposed method.