• Title/Summary/Keyword: 음 글로우

Search Result 2, Processing Time 0.016 seconds

Study on High Degree of Efficiency Chemical Reactor for Air Purification Using the Glow Discharge (글로우 방전을 이용한 고효율 공기 정화용 화학 반응기의 특성관찰에 관한 연구)

  • Kim, Gi-Ho;Bu, Min-Ho;Lee, Sang-Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.14-22
    • /
    • 2006
  • the basic model of chemical reactor using glow discharge, we used cathode discharge cell with vacant cavity in the middle. Currently glow discharge is widely studied as a radiation source or atomization device in atomic spectroscopy and remarkable technological achievements are made through the graft with other analysis devices such as microanalysis and steel analysis.1 Additionally, as the characteristics of basic glow discharge and radiation have been reviewed many times, those results could be used in this experiment.2-3 In 1993, an article regarding the treatment of poisonous gas in the air using low temperature plasma was published. According to this article, if DC Glow Discharge is used under continuous atmospheric flow, poisonous gases such as SO2 and NO can be removed.4 Based on those findings, we designed highly efficient reactor where stable air plasma is composed and all air flow pass the negative glow area passing through the tube. It was observed that the cathode tube type glow discharge developed in this study would be economical, easy to use and could be used as radiation source as well.

Observation of spontaneous oscillation of optogalvanic signal in a hollow cathode discharge (Hollow cathode discharge에서 자발적 진동의 광검류 신호 측정)

  • 이준회
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.51-54
    • /
    • 2003
  • The spontaneous oscillations in the optogalvanic signals are observed in negative glow region of Ar hollow cathode discharge. The spontaneous oscillations in the optogalvanic signals are observed at low discharge currents less than about 3 mA. Based on the simultaneous measurements of both the density variation of metastable atoms and emission intensities of the 1s-2p transitions, one of the possible mechanisms for the spontaneous oscillation is considered to be related to the stepwise ionization of the metastable atoms due to collisions with slow electrons in the discharge.