• Title/Summary/Keyword: 음향차폐장치

Search Result 5, Processing Time 0.016 seconds

The Design and Performance test of the Acoustic enclosure for Diesel engine (기관 소음원 차폐장치 설계 및 성능시험)

  • 서종수;전재진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.167-171
    • /
    • 1994
  • 본 연구에서는 차폐구조 내부에 위치한 소음원의 체적이 비교적 큰 근접 음향 차폐구조로 취급하여, 구조 내부의 공간적 음장분포해석(spatial sound distribution analysis)은 하지 않고 단지 소음원의 표면과 차폐 벽면 간의 공기층에 의한 간섭 영향을 고려하면서, 차폐로 인한 음압의 상승(build up)효과를 고려하여, 직육면체의 형상을 가지는 차폐구조에 부착되는 각각의 벽면들의 음향 삽입손실(Insertion Loss, IL) 특성을 전달매트릭스 기법(Transfer Matrix Analysis, TMA)을 이용하여 해석하였으며, 이러한 벽면들에 대한 이론 해석의 결과로 제작된 벽면들의 음향차폐특성을 시험을 통해 나타내었다.

  • PDF

Design of Close-Fitting Acoustic Enclosure of Diesel Engine (디젤엔진의 근접 음향 차폐장치 설계 및 성능평가)

  • 류정수;정우진;전재진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.82-89
    • /
    • 1999
  • In this article, the performances of acoustic enclosure with double resilient mount system which was designed by ADD to reduce the radiated noise by main noise source of ships, was tested and evaluated. From test results, it was verified that the acoustic performances of acoustic enclosure satisfied the requirements; vibration isolation level at 1st stage mount system of 15 ㏈ and airborne noise reduction level of 20 ㏈ in broad band.

  • PDF

A Vibration Mode Analysis of Resilient Mounting System and Foundation Structure of Acoustic Enclosure using Finite Element Method (유한요소법을 이용한 음향차폐장치용 탄성마운트 시스템 및 받침대의 진동모드 해석)

  • 정우진;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.493-501
    • /
    • 1999
  • The vibration modes of resilient mounting system and foundation structure which support diesel engine/generator set and acoustic enclosure walls play an important role in the vibration transmission process. So, it is necessary to perform vibration mode analysis of resilient mounting system and foundation structure. For some reasons, if the vibration modal analysis of resilient mounting system and foundation structure of acoustic enclosure could be simultaneously done by finite element method, it would be very efficient approach. In this paper, vibration modal analysis method using finite element method for multi stage mounting system having n d.o.f model was proposed. Vibration analysis of single and double stage resilient mounting system was performed to verify the validity of the proposed method. Also frequency response results were compared in case of rigid foundation model and finite element foundation model which was compared with experimental modal analysis results.

  • PDF

Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus (열음향 피로 시험 장치를 이용한 티타늄 시편의 동적 거동에 관한 실험적 연구)

  • Go, Eun-Su;Kim, Mun-Guk;Moon, Young-Sun;Kim, In-Gul;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • High supersonic aircraft are exposed to high temperature environments by aerodynamic heating during supersonic flight. Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by supersonic aircraft's high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic aircraft skin structure under thermal-acoustic load and to predict fatigue life. In this paper, we designed and fabricated thermal-acoustic test equipment to simulate thermal-acoustic load. Thermal-acoustic testing of the titanium specimen under thermal-acoustic load was performed. The analytical model was verified by comparing the thermal-acoustic test results with the finite element analysis results.

Acoustic Enclosure Design of Diesel Engine (디젤엔진의 음향차폐장치 설계)

  • Choi, Hyun;Kim, Young-Chan;Kim, Doo-Hoon;Jeon, Jae-jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.481-487
    • /
    • 1997
  • The development of transportation and construction equipment has required higher engine power and lower operation cost. The sound which the engine emits often degrade the performance of the whole system which adopts that engine. Specially the marine engine requires high restriction on the noise level for the customer's comfort and safety. The noise and vibration of Diesel engine must be carefully considered in the early design step. The double antivibration system is effective to increase the efficiency of antivibration, and the acoustic enclosure for reducing the noise level. 2 DOF model was effective to estimate the antivibration performance, which allows to determine the mass of the engine bed and the specification of the engine mount. The mass distribution of the enclosure system can be considered effectively by using the FEM model. The design contains structurally rigid engine bed by FEM, which is for reducing the influence of the flexible vibration, rubber mount selection as well as the acoustic enclosure design.

  • PDF