• Title/Summary/Keyword: 음절 수

Search Result 318, Processing Time 0.029 seconds

Speech Recognitioin Using Multilayered Recurrent Neural Networks (다층회귀신경망을 이용한 음성인식)

  • 어태경
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.267-271
    • /
    • 1998
  • 신경망에 의한 음절과 연속음성 인식시 동특성처리의 한방법으로 회귀신경망을 이용한다. 본 연구는 비회귀형 상위은닉층과 회귀형 하위은닉층을 가진 4층 구조의 다층회귀신경망으로 예측기를 반들어 나성화자 5명이 CV형 음절 14개, CVC형 음절 14개를 각각 5회씩 발음한 총 700개의 음성중 3회분인 420개 음성으로 학습한 후 나머지 2회분인 280개 음성으로 인식을 평가한다. 입력신호의 예측차수와 상, 하위 은닉층으 뉴런수를 변경시키면서 각각의 인식률을 조사해 본 결과 상위 은닉층의 뉴런이 10개이고 하위 은닉층의 뉴런이 10개와 15개 그리고 예측차수가 3,4차일 때 가장 양호한 인식기로 동작한다는 것을 알 수 있었다. 이 때 나타난 인식률은 Elman 망보다 다소 우세하다.

  • PDF

The Searching of Korean Words Using Double Trie (이중 트라이를 이용한 한국어 단어 검색)

  • Kim, Cheol-Su;Bae, Woo-Jeong;Lee, Yong-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.113-118
    • /
    • 1994
  • 한국어 정보처리를 효율적으로 수행하기 위해서는 단어의 검색시간을 최소화하여야 한다. 그러나 기존의 방법들은 단어의 삽입과 삭제가 불가능하거나 검색시간이 길다는 단점을 가지고 있다. 본 논문에서는 탐식시간을 최소화하기 위해서 이중 배열을 가지는 이중 트라이를 이용하여 음절 및 자소단위의 검색방법에 관하여 논의한다. 검색시간에 있어서는 음절단위의 방법이 자소단위의 방법보다 빠르지만 기억장소는 자소단위의 방법이 음절단위의 방법보다 효율적이다. 자소단위의 방법에서 하나의 트라이를 여러개로 분할하여 저장함으로써 기억장소를 절반으로 줄일 수 있어 기억장소를 보다 효율적으로 이용할 수 있다.

  • PDF

A Study on the Speaker Adaptation of a Continuous Speech Recognition using HMM (HMM을 이용한 연속 음성 인식의 화자적응화에 관한 연구)

  • Kim, Sang-Bum;Lee, Young-Jae;Koh, Si-Young;Hur, Kang-In
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 1996
  • In this study, the method of speaker adaptation for uttered sentence using syllable unit hmm is proposed. Segmentation of syllable unit for sentence is performed automatically by concatenation of syllable unit hmm and viterbi segmentation. Speaker adaptation is performed using MAPE(Maximum A Posteriori Probabillity Estimation) which can adapt any small amount of adaptation speech data and add one sequentially. For newspaper editorial continuous speech, the recognition rates of adaptation of HMM was 71.8% which is approximately 37% improvement over that of unadapted HMM

  • PDF

A Division Method of Korean Compound Noun by number of syllable (음절수에 따른 한국어 복합 명사 분리 방안)

  • Choi, Jae-Hyuk
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.262-267
    • /
    • 1996
  • 한국어 맞춤법 검사기는 문서내에서 발생되는 비표준어 오류, 띄어쓰기/붙여쓰기 오류, 조사/어미 오류, 외래어 오류, 철자 오류 등에 대해서 이에 적합한 대치어를 제시해 준다. 일반적으로 한국어의 맞춤법 오류 중 가장 빈번하게 발생되는 것이 띄어쓰기 오류이며, 이 중에서도 복합 명사에 대한 띄어쓰기 오류가 가장 많이 발생한다. 본 논문에서는 복합 명사에 대한 띄어쓰기 교정 방안으로 복합명사의 음절수에 따라 1개의 결과만을 출력하도록 하는 복합 명사 분리 방안을 제시하며, 또한 복합 명사 분리 시의 사전 참조 횟수를 줄이는 방법을 제안한다.

  • PDF

A Study on the Foreign Accent of English Stressed Syllables (영어강세음절의 외국인어투에 관한 연구)

  • Park, Hee-Suk
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.51-57
    • /
    • 2016
  • This study aims at investigating and comparing the vowel lengths of the eight stressed syllable vowels among the Korean college students with the English native speakers. To do this English sentences were uttered and recorded by twenty Korean subjects. Acoustic features were measured from a sound spectrogram with the help of the Praat software program and analyzed through statistical analysis. From the results of the experiment, I was able to find out that the differences of the lengths of the first syllable stressed vowels were significant. Especially in the pronunciation of the English front low vowel /${\ae}$/, native subjects pronounced significantly longer than Korean subjects, and this result could be used as a teaching material in pronunciation class.

The syllable recovrey rule-based system and the application of a morphological analysis method for the post-processing of a continuous speech recognition (연속음성인식 후처리를 위한 음절 복원 rule-based 시스템과 형태소분석기법의 적용)

  • 박미성;김미진;김계성;최재혁;이상조
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.3
    • /
    • pp.47-56
    • /
    • 1999
  • Various phonological alteration occurs when we pronounce continuously in korean. This phonological alteration is one of the major reasons which make the speech recognition of korean difficult. This paper presents a rule-based system which converts a speech recognition character string to a text-based character string. The recovery results are morphologically analyzed and only a correct text string is generated. Recovery is executed according to four kinds of rules, i.e., a syllable boundary final-consonant initial-consonant recovery rule, a vowel-process recovery rule, a last syllable final-consonant recovery rule and a monosyllable process rule. We use a x-clustering information for an efficient recovery and use a postfix-syllable frequency information for restricting recovery candidates to enter morphological analyzer. Because this system is a rule-based system, it doesn't necessitate a large pronouncing dictionary or a phoneme dictionary and the advantage of this system is that we can use the being text based morphological analyzer.

  • PDF

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

Syllabic Speech Rate Control for Improving Elderly Speech Recognition of Smart Devices (음절 별 발화속도 조절을 통한 노인 음석인식 개선)

  • Kyeong, Ju Won;Son, Gui Young;Kwon, Soonil
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1711-1714
    • /
    • 2015
  • 스마트 디바이스가 사회와 소통할 수 있는 도구가 되었음에도 불구하고 아직까지 노인들이 사용하기에는 어려움이 있다. 여기에 음성인식 기술을 이용한 음성인터페이스를 활용함으로써 노인들의 스마트 디바이스에 대한 사용성을 높일 수 있다. 하지만 일반적인 음성인식 시스템은 청장년의 발성 스타일에 맞춰져 있기 때문에, 노화된 노인의 발성이 그대로 입력될 경우 음성인식률이 하락한다. 본 연구에서는 노인의 음절 별 발화속도가 일반적인 음성인식 시스템의 성능을 보증할 수 있는 범위를 벗어나는 경우가 많다는 분석 결과를 토대로 노인의 음절 별 발화속도를 조정한 결과 노인남녀 평균 음성인식률이 15.3% 상승하였다. 이처럼 노인의 음성인식 오류 원인들 중 하나인 발화속도의 재조정으로 음성 인식률을 높일 수 있는 토대를 마련하였다. 이는 노인들이 스마트 디바이스를 이용하여 쉽고 정확한 작업을 수행할 수 있게 됨으로써, 노인들의 사회 참여와 정보 획득이 용이해 지고 더 나아가 세대 간의 소통에도 이바지할 것으로 기대한다.

Syllable-based Probabilistic Models for Korean Morphological Analysis (한국어 형태소 분석을 위한 음절 단위 확률 모델)

  • Shim, Kwangseob
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.642-651
    • /
    • 2014
  • This paper proposes three probabilistic models for syllable-based Korean morphological analysis, and presents the performance of proposed probabilistic models. Probabilities for the models are acquired from POS-tagged corpus. The result of 10-fold cross-validation experiments shows that 98.3% answer inclusion rate is achieved when trained with Sejong POS-tagged corpus of 10 million eojeols. In our models, POS tags are assigned to each syllable before spelling recovery and morpheme generation, which enables more efficient morphological analysis than the previous probabilistic models where spelling recovery is performed at the first stage. This efficiency gains the speed-up of morphological analysis. Experiments show that morphological analysis is performed at the rate of 147K eojeols per second, which is almost 174 times faster than the previous probabilistic models for Korean morphology.

A Study On Continuous Digits Recognition Using the Neural Network (신경망을 이용한 연속 숫자음 인식에 관한 연구)

  • 이성권;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.3-13
    • /
    • 1998
  • 본 논문은 음성 다이어링 시스템을 구현하기 위한 한국어 단독 숫자음 및 연속 숫 자음 인식에 관한 것이다. 단독 숫자음의 인식은 미지의 입력 음성을 재귀 신경망을 이용하 여 모델링된 각 모델에 인가하고, 신경 회로망의 출력 노드의 상태열을 검사하여 적절한 상 태 전이를 하며 최고의 확률값을 출력하는 모델을 인식된 결과로 출력한다. 연속 숫자음의 인식은 미지의 연속 숫자음을 재귀 신경 회로망을 이용한 연속 숫자음 모델에 입력하고, 신 경 회로망의 출력에 대하여 적절한 상태 전이에 대한 검사와 레벨 빌딩(Level Building)을 수행하여 최소의 오차를 가지는 모델열을 인식된 결과로 출력한다. 재귀 신경 회로망을 이 용하여 음절 모델을 만드는 과정에서 재귀 노드는 예상치가 주어지지 않으므로 신경 회로망 의 학습에서 제외되어 현저한 학습 속도의 저하를 가져온다. 따라서 본 논문에서는 재귀 신 경 회로망의 학습 속도를 향상시키기 위한 2가지 방법을 제안 한다. 첫 번째는 재귀 신경 회로망의 재귀 노드의 예상치를 실험적으로 주어줌으로써 학습 속도의 향상을 도모하였다. 두 번째는 음절 모델의 출력노드의 개수와 음절 모델의 세그먼트 경계를 알고리듬을 이용하 여 자동적으로 조절하였다. 실험결과, 단독어의 경우 음절 '에'에 포함하는 한국어 11개의 숫 자음에 대하여 화자 종속의 경우 97.3%, 화자 독립의 경우 80.5%의 인식률을 얻었으며, 연 속 숫자음의 경우는 21종류의 연속 숫자음에 대하여 화자 종속에서 88.2%, 화자 독립의 경 우 81.3%의 인식률을 얻을 수 있었다.

  • PDF