• 제목/요약/키워드: 음원 임베딩

검색결과 2건 처리시간 0.014초

음원 메타데이터와 사용자 플레이리스트를 활용한 음악 추천 시스템 (Music Recommendation System Using Audio Metadata and User Playlists)

  • 남경민;박유림;정지영;김도현;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.731-732
    • /
    • 2024
  • 본 논문은 음원 메타데이터 임베딩 방법론을 기반으로 새로운 음원 추천 방법을 제안한다. 사용자 행동 데이터를 활용한 개인 맞춤형 음악 추천 모델은 신규 사용자의 데이터가 부족할 경우, 적절한 추천이 어려운 콜드스타트 현상을 초래할 수 있다. 본 연구에서는 플레이리스트의 음원 메타데이터를 Song sentence 로 구성하고, 고차원 벡터 공간에 임베딩하여 유사도를 계산한 추천 알고리즘을 구축한다. 사용자 행동 데이터가 아닌 음원의 자체적인 정보에 근거하기 때문에 콜드 스타트 현상을 보완하여 사용자에게 편리한 음악 감상 경험을 제공할 수 있을 것으로 기대된다.

음원 메타데이터 임베딩을 활용한 사용자 플레이리스트 기반 음악 추천 (User Playlist-Based Music Recommendation Using Music Metadata Embedding)

  • 남경민;박유림;정지영;김도현;김현희
    • 정보처리학회 논문지
    • /
    • 제13권8호
    • /
    • pp.367-373
    • /
    • 2024
  • 모바일 기기와 네트워크 인프라의 성장은 음악 산업에 상당한 변화를 초래하였다. 온라인 스트리밍 서비스의 등장으로 시공간의 제약 없이 음악 청취가 가능해졌고 소비자의 음악 창작과 공유 활동의 증가로 방대한 양의 음원 데이터가 축적되었다. 이로써 사용자의 취향에 맞는 추천을 위해 사용자의 행동 데이터를 기반으로 한 개인 맞춤형 음악 추천 모델이 활발히 연구되고 있다. 그러나 신규 사용자의 경우, 데이터가 부족하여 적절한 추천이 어려운 콜드 스타트 현상을 초래할 수 있다. 본 연구에서는 플레이리스트를 활용하여 음원 메타데이터를 Song sentence로 정의하고, 고차원 벡터 공간에 임베딩하여 유사도를 계산한 추천 알고리즘을 제안한다. 성능 평가 결과 가수, 장르, 작곡가, 작사가, 편곡가, 시대, 계절, 감정, 태그 리스트를 모두 활용한 제안하는 음원 추천 알고리즘이 가장 높은 성능을 보임을 알 수 있었다. 제안하는 추천 알고리즘은 사용자의 과거 행동 데이터에 기반한 추천 시스템이 아닌 음원이 자체적으로 보유한 정보에 근거하기 때문에 콜드 스타트 현상과 더불어 정보 편식 현상을 보완하여 사용자에게 보다 편리한 음악 감상 경험을 제공할 수 있을 것으로 기대된다.