• Title/Summary/Keyword: 음악 추천시스템

Search Result 99, Processing Time 0.026 seconds

A Music Recommendation System by Using Graph-based Collaborative Filtering (그래프 기반 협동적 여과를 이용한 음악 추천 시스템)

  • Kim, Hyung-Il;Lee, Jin-Seok;Lee, Jeong-Hyun;Cho, Chin-Kwna;Kim, Kyoung-Sup;Kim, Jun-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.51-54
    • /
    • 2006
  • 본 논문에서는 각 사용자들의 취향에 맞는 음악을 추천하는 개인화된 음악 추천 시스템을 소개한다. 추천 시스템이란 사용자의 선호도를 분석하고 아이템들에 대한 사용자의 선호도를 예측하여 영화, 음악, 기사, 책, 웹 페이지 등과 같은 아이템들을 추천하는 시스템을 말한다. 추천 시스템들에서 가장 많이 사용하고 있는 협동적 추천 방식은 선호도 데이터를 기반으로 유사한 사용자들을 찾고, 유사 사용자들의 선호도를 기반으로 예측을 수행하는 것으로서, 여러 장점들이 있으나 희소성(sparsity) 문제와 확장성(scalability) 문제에 대해 취약점을 가지고 있다. 아이템들의 전체 수에 비해 매우 적은 수의 아이템 선호도 데이터만 존재한다면 사용자들의 유사도를 계산하기가 어려우며, 또한 사용자의 수가 늘어날수록 유사도 계산에 걸리는 시간이 급격하게 늘어남으로써 수백만 사용자가 있는 웹 사이트 등에서 실시간 추천을 수행하기 어렵다. 본 논문에서 소개하는 음악 추천 시스템은 이러한 문제점들을 해결하기 위해 그래프 기반 협동적 여과 기법을 사용한다. 그래프 기반 협동적 여과 기법은 기존의 협동적 여과 기법들과 달리 아이템들 사이의 연관관계를 그래프 모델로 표현하고 저장함으로써 묵시적인 선호도 정보들을 누적하여 희소성 문제를 해결하고, 추천 아이템을 선정하는데 필요한 계산 시간을 크게 단축하여 대규모 데이터에서 실시간 추천을 가능하게 한다는 장점이 있다.

  • PDF

Personalized Digital Music Recommendation Based on the Collaborative Filtering (협동적 여과를 기반으로 하는 개인화된 디지털 음악 추천)

  • Kim, Jun-Tae;Kim, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.521-529
    • /
    • 2007
  • In this paper, we introduce a music recommendation system that automatically recommends music according to users' musical tastes. The recommendation system uses a graph-based collaborating filtering in which similarities between musics are saved as a graph, and so it can perform fast recommendation based on the implicit preference information. It also has capability of recommending music according to users' dynamically changing preferences as well as users' static preferences. The recommendation server is implemented as an independent server using Java, and communicates with clients according to a specified protocol. A demo web site has been built by using the server and music download data from actual users, and the accuracy of recommendation has been measured through experiments.

  • PDF

Similarity Evaluation of Popular Music based on Emotion and Structure of Lyrics (가사의 감정 분석과 구조 분석을 이용한 노래 간 유사도 측정)

  • Lee, Jaehwan;Lim, Hyewon;Kim, Hyoung-Joo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.10
    • /
    • pp.479-487
    • /
    • 2016
  • People can listen to almost every type of music by music streaming services without possessing music. Ironically it is difficult to choose what to listen to. A music recommendation system helps people in making a choice. However, existing recommendation systems have high computation complexity and do not consider context information. Emotion is one of the most important context information of music. Lyrics can be easily computed with various language processing techniques and can even be used to extract emotion of music from itself. We suggest a music-level similarity evaluation method using emotion and structure. Our result shows that it is important to consider semantic information when we evaluate similarity of music.

A Decision Tree-based Music Recommendation System Using the user experience (사용자 경험정보를 고려한 결정트리 기반 음악 추천 시스템)

  • Kim, Yu-ri;Kim, Seong-gi;Kim, Jeong-Ho;Jo, Jae-rim;Lee, Dong-wook;Kim, Seok-Jin;Jeon, Soo-bin;Seo, Dong-mahn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.655-658
    • /
    • 2020
  • 최근 IT 기술의 발달로 태블릿, 스마트폰과 같은 다양한 디바이스로 손쉽게 음악을 감상할 수 있다. 하지만 최근 이런 기술 발달과는 다르게 사용자가 원하는 음악을 검색하는 방법은 고전적인 형태에서 벗어나지 않고 있다. 기존 음악 검색 방법은 텍스트 기반, 내용 기반, 소비자 감성 기반의 음악 추천 검색 방법이 있으며 저장된 메타 데이터를 이용하여 사용자의 질의에 대한 결과만 제공할 뿐 사용자의 경험 정보를 고려하지 않는다. 그리고 기존 플랫폼들은 사용자가 최근 많이 들은 가수, 장르, 분위기를 종합하여 사용자에게 어울리는 음악을 추천을 할 뿐 사용자의 경험정보를 고려하여 음악을 추천하지는 않는다. 본 논문에서는 사용자의 경험 정보를 활용하여 사용자 맞춤형 음악 추천 시스템을 제안한다. 본 시스템은 사용자의 현재 기분 정보, 주변 날씨 정보 등을 입력 받는다. 이후, 경험 정보를 기반으로 결정 트리를 통해 사용자 요구 기반의 음악 추천 시스템을 구축하였다.

A Music Recommender Service System using Data Mining and Filtering (데이터 마이닝과 필터링을 이용한 음악추천 서비스 시스템)

  • Lee, Sang-jae;Kim, Won-young;Kim, Ung-mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.731-732
    • /
    • 2009
  • MP3 기기 및 음악재생과 관련된 인터페이스는 이미 우리 생활 곳곳에 전반적으로 자리잡고 있다. 기존의 수동적으로 음악 파일을 검색하여 듣는 방법이 아닌, 사용자의 심리상태, 관심사와 외부변수를 고려하여 사용자가 선호할 만한 음악추천 서비스를 제공하는 방법에 대해 논의한다. 본 논문에서는 데이터 마이닝의 기법인 연관 규칙, 필터링과 추천방법을 통하여 사용자가 원하는 서비스 정보를 효율적으로 도출하는 추천 시스템을 설계한다. 또한 이러한 시스템의 추천목록에 대한 사용자의 만족도를 스스로 평가하는 방법에 대해서도 제안한다.

Tempo-oriented music recommendation system based on human activity recognition using accelerometer and gyroscope data (가속도계와 자이로스코프 데이터를 사용한 인간 행동 인식 기반의 템포 지향 음악 추천 시스템)

  • Shin, Seung-Su;Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.286-291
    • /
    • 2020
  • In this paper, we propose a system that recommends music through tempo-oriented music classification and sensor-based human activity recognition. The proposed method indexes music files using tempo-oriented music classification and recommends suitable music according to the recognized user's activity. For accurate music classification, a dynamic classification based on a modulation spectrum and a sequence classification based on a Mel-spectrogram are used in combination. In addition, simple accelerometer and gyroscope sensor data of the smartphone are applied to deep spiking neural networks to improve activity recognition performance. Finally, music recommendation is performed through a mapping table considering the relationship between the recognized activity and the indexed music file. The experimental results show that the proposed system is suitable for use in any practical mobile device with a music player.

개인화 기법을 이용한 모바일 추천 시스템

  • Kim, Ryong;Gang, Ji-Heon;Kim, Yeong-Guk
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.565-570
    • /
    • 2007
  • 네트워크의 발달은 유선 인터넷(Wired LAN)과 무선 인터넷(Wireless LAN) 시대를 지나 휴대 인터넷(Mobile LAN)으로 발전하고 있다. 이처럼 다양한 네트워크의 공존은 사용자에게 보다 빠르고 저렴한 서비스를 제공하고 있다. 본 논문에서는 모바일 기기 사용자를 위한 개인화 방법으로 협업 필터링 방법을 통한 추천과 푸쉬(push) 방식의 서비스 방법을 제안한다. 사용자 프로파일 정보는 협업 필터링 방법을 통한 사용자 선호 음악 추천을 수행하고, 추천된 사용자 선호 음악은 모바일 기기로 푸쉬 서비스 된다. 추천을 통한 모바일 음악 푸쉬 서비스는 모바일 기기 사용자로 하여금 네트워크 환경에 접속되어있을 때 사용자 취향에 맞는 음악을 능동적으로 다운로드 해 둠으로써 사용자가 음악을 선택하여 모바일 기기로 다운로드 하는 시간을 줄여 줄 수 있다.

  • PDF

Multidimensional Optimization Model of Music Recommender Systems (음악추천시스템의 다차원 최적화 모형)

  • Park, Kyong-Su;Moon, Nam-Me
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.155-164
    • /
    • 2012
  • This study aims to identify the multidimensional variables and sub-variables and study their relative weight in music recommender systems when maximizing the rating function R. To undertake the task, a optimization formula and variables for a research model were derived from the review of prior works on recommender systems, which were then used to establish the research model for an empirical test. With the research model and the actual log data of real customers obtained from an on line music provider in Korea, multiple regression analysis was conducted to induce the optimal correlation of variables in the multidimensional model. The results showed that the correlation value against the rating function R for Items was highest, followed by Social Relations, Users and Contexts. Among sub-variables, popular music from Social Relations, genre, latest music and favourite artist from Items were high in the correlation with the rating function R. Meantime, the derived multidimensional recommender systems revealed that in a comparative analysis, it outperformed two dimensions(Users, Items) and three dimensions(Users, Items and Contexts, or Users, items and Social Relations) based recommender systems in terms of adjusted $R^2$ and the correlation of all variables against the values of the rating function R.

A Personalized Music Recommendation System with a Time-weighted Clustering (시간 가중치와 가변형 K-means 기법을 이용한 개인화된 음악 추천 시스템)

  • Kim, Jae-Kwang;Yoon, Tae-Bok;Kim, Dong-Moon;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.504-510
    • /
    • 2009
  • Recently, personalized-adaptive services became the center of interest in the world. However the services about music are not widely diffused out. That is because the analyzing of music information is more difficult than analyzing of text information. In this paper, we propose a music recommendation system which provides personalized services. The system keeps a user's listening list and analyzes it to select pieces of music similar to the user's preference. For analysis, the system extracts properties from the sound wave of music and the time when the user listens to music. Based on the properties, a piece of music is mapped into a point in the property space and the time is converted into the weight of the point. At this time, if we select and analyze the group which is selected by user frequently, we can understand user's taste. However, it is not easy to predict how many groups are formed. To solve this problem, we apply the K-means clustering algorithm to the weighted points. We modified the K-means algorithm so that the number of clusters is dynamically changed. This manner limits a diameter so that we can apply this algorithm effectively when we know the range of data. By this algorithm we can find the center of each group and recommend the similar music with the group. We also consider the time when music is released. When recommending, the system selects pieces of music which is close to and released contemporarily with the user's preference. We perform experiments with one hundred pieces of music. The result shows that our proposed algorithm is effective.

User Playlist-Based Music Recommendation Using Music Metadata Embedding (음원 메타데이터 임베딩을 활용한 사용자 플레이리스트 기반 음악 추천)

  • Kyoung Min Nam;Yu Rim Park;Ji Young Jung;Do Hyun Kim;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.8
    • /
    • pp.367-373
    • /
    • 2024
  • The growth of mobile devices and network infrastructure has brought significant changes to the music industry. Online streaming services has allowed music consumption without constraints of time and space, leading to increased consumer engagement in music creation and sharing activities, resulting in a vast accumulation of music data. In this study, we define metadata as "song sentences" by using a user's playlist. To calculate similarity, we embedded them into a high-dimensional vector space using skip-gram with negative sampling algorithm. Performance eva luation results indicated that the recommended music algorithm, utilizing singers, genres, composers, lyricists, arrangers, eras, seasons, emotions, and tag lists, exhibited the highest performance. Unlike conventional recommendation methods based on users' behavioral data, our approach relies on the inherent information of the tracks themselves, potentially addressing the cold start problem and minimizing filter bubble phenomena, thus providing a more convenient music listening experience.