Kim, Hyung-Il;Lee, Jin-Seok;Lee, Jeong-Hyun;Cho, Chin-Kwna;Kim, Kyoung-Sup;Kim, Jun-Tae
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.51-54
/
2006
본 논문에서는 각 사용자들의 취향에 맞는 음악을 추천하는 개인화된 음악 추천 시스템을 소개한다. 추천 시스템이란 사용자의 선호도를 분석하고 아이템들에 대한 사용자의 선호도를 예측하여 영화, 음악, 기사, 책, 웹 페이지 등과 같은 아이템들을 추천하는 시스템을 말한다. 추천 시스템들에서 가장 많이 사용하고 있는 협동적 추천 방식은 선호도 데이터를 기반으로 유사한 사용자들을 찾고, 유사 사용자들의 선호도를 기반으로 예측을 수행하는 것으로서, 여러 장점들이 있으나 희소성(sparsity) 문제와 확장성(scalability) 문제에 대해 취약점을 가지고 있다. 아이템들의 전체 수에 비해 매우 적은 수의 아이템 선호도 데이터만 존재한다면 사용자들의 유사도를 계산하기가 어려우며, 또한 사용자의 수가 늘어날수록 유사도 계산에 걸리는 시간이 급격하게 늘어남으로써 수백만 사용자가 있는 웹 사이트 등에서 실시간 추천을 수행하기 어렵다. 본 논문에서 소개하는 음악 추천 시스템은 이러한 문제점들을 해결하기 위해 그래프 기반 협동적 여과 기법을 사용한다. 그래프 기반 협동적 여과 기법은 기존의 협동적 여과 기법들과 달리 아이템들 사이의 연관관계를 그래프 모델로 표현하고 저장함으로써 묵시적인 선호도 정보들을 누적하여 희소성 문제를 해결하고, 추천 아이템을 선정하는데 필요한 계산 시간을 크게 단축하여 대규모 데이터에서 실시간 추천을 가능하게 한다는 장점이 있다.
In this paper, we introduce a music recommendation system that automatically recommends music according to users' musical tastes. The recommendation system uses a graph-based collaborating filtering in which similarities between musics are saved as a graph, and so it can perform fast recommendation based on the implicit preference information. It also has capability of recommending music according to users' dynamically changing preferences as well as users' static preferences. The recommendation server is implemented as an independent server using Java, and communicates with clients according to a specified protocol. A demo web site has been built by using the server and music download data from actual users, and the accuracy of recommendation has been measured through experiments.
People can listen to almost every type of music by music streaming services without possessing music. Ironically it is difficult to choose what to listen to. A music recommendation system helps people in making a choice. However, existing recommendation systems have high computation complexity and do not consider context information. Emotion is one of the most important context information of music. Lyrics can be easily computed with various language processing techniques and can even be used to extract emotion of music from itself. We suggest a music-level similarity evaluation method using emotion and structure. Our result shows that it is important to consider semantic information when we evaluate similarity of music.
Kim, Yu-ri;Kim, Seong-gi;Kim, Jeong-Ho;Jo, Jae-rim;Lee, Dong-wook;Kim, Seok-Jin;Jeon, Soo-bin;Seo, Dong-mahn
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.655-658
/
2020
최근 IT 기술의 발달로 태블릿, 스마트폰과 같은 다양한 디바이스로 손쉽게 음악을 감상할 수 있다. 하지만 최근 이런 기술 발달과는 다르게 사용자가 원하는 음악을 검색하는 방법은 고전적인 형태에서 벗어나지 않고 있다. 기존 음악 검색 방법은 텍스트 기반, 내용 기반, 소비자 감성 기반의 음악 추천 검색 방법이 있으며 저장된 메타 데이터를 이용하여 사용자의 질의에 대한 결과만 제공할 뿐 사용자의 경험 정보를 고려하지 않는다. 그리고 기존 플랫폼들은 사용자가 최근 많이 들은 가수, 장르, 분위기를 종합하여 사용자에게 어울리는 음악을 추천을 할 뿐 사용자의 경험정보를 고려하여 음악을 추천하지는 않는다. 본 논문에서는 사용자의 경험 정보를 활용하여 사용자 맞춤형 음악 추천 시스템을 제안한다. 본 시스템은 사용자의 현재 기분 정보, 주변 날씨 정보 등을 입력 받는다. 이후, 경험 정보를 기반으로 결정 트리를 통해 사용자 요구 기반의 음악 추천 시스템을 구축하였다.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.731-732
/
2009
MP3 기기 및 음악재생과 관련된 인터페이스는 이미 우리 생활 곳곳에 전반적으로 자리잡고 있다. 기존의 수동적으로 음악 파일을 검색하여 듣는 방법이 아닌, 사용자의 심리상태, 관심사와 외부변수를 고려하여 사용자가 선호할 만한 음악추천 서비스를 제공하는 방법에 대해 논의한다. 본 논문에서는 데이터 마이닝의 기법인 연관 규칙, 필터링과 추천방법을 통하여 사용자가 원하는 서비스 정보를 효율적으로 도출하는 추천 시스템을 설계한다. 또한 이러한 시스템의 추천목록에 대한 사용자의 만족도를 스스로 평가하는 방법에 대해서도 제안한다.
In this paper, we propose a system that recommends music through tempo-oriented music classification and sensor-based human activity recognition. The proposed method indexes music files using tempo-oriented music classification and recommends suitable music according to the recognized user's activity. For accurate music classification, a dynamic classification based on a modulation spectrum and a sequence classification based on a Mel-spectrogram are used in combination. In addition, simple accelerometer and gyroscope sensor data of the smartphone are applied to deep spiking neural networks to improve activity recognition performance. Finally, music recommendation is performed through a mapping table considering the relationship between the recognized activity and the indexed music file. The experimental results show that the proposed system is suitable for use in any practical mobile device with a music player.
네트워크의 발달은 유선 인터넷(Wired LAN)과 무선 인터넷(Wireless LAN) 시대를 지나 휴대 인터넷(Mobile LAN)으로 발전하고 있다. 이처럼 다양한 네트워크의 공존은 사용자에게 보다 빠르고 저렴한 서비스를 제공하고 있다. 본 논문에서는 모바일 기기 사용자를 위한 개인화 방법으로 협업 필터링 방법을 통한 추천과 푸쉬(push) 방식의 서비스 방법을 제안한다. 사용자 프로파일 정보는 협업 필터링 방법을 통한 사용자 선호 음악 추천을 수행하고, 추천된 사용자 선호 음악은 모바일 기기로 푸쉬 서비스 된다. 추천을 통한 모바일 음악 푸쉬 서비스는 모바일 기기 사용자로 하여금 네트워크 환경에 접속되어있을 때 사용자 취향에 맞는 음악을 능동적으로 다운로드 해 둠으로써 사용자가 음악을 선택하여 모바일 기기로 다운로드 하는 시간을 줄여 줄 수 있다.
This study aims to identify the multidimensional variables and sub-variables and study their relative weight in music recommender systems when maximizing the rating function R. To undertake the task, a optimization formula and variables for a research model were derived from the review of prior works on recommender systems, which were then used to establish the research model for an empirical test. With the research model and the actual log data of real customers obtained from an on line music provider in Korea, multiple regression analysis was conducted to induce the optimal correlation of variables in the multidimensional model. The results showed that the correlation value against the rating function R for Items was highest, followed by Social Relations, Users and Contexts. Among sub-variables, popular music from Social Relations, genre, latest music and favourite artist from Items were high in the correlation with the rating function R. Meantime, the derived multidimensional recommender systems revealed that in a comparative analysis, it outperformed two dimensions(Users, Items) and three dimensions(Users, Items and Contexts, or Users, items and Social Relations) based recommender systems in terms of adjusted $R^2$ and the correlation of all variables against the values of the rating function R.
Kim, Jae-Kwang;Yoon, Tae-Bok;Kim, Dong-Moon;Lee, Jee-Hyong
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.4
/
pp.504-510
/
2009
Recently, personalized-adaptive services became the center of interest in the world. However the services about music are not widely diffused out. That is because the analyzing of music information is more difficult than analyzing of text information. In this paper, we propose a music recommendation system which provides personalized services. The system keeps a user's listening list and analyzes it to select pieces of music similar to the user's preference. For analysis, the system extracts properties from the sound wave of music and the time when the user listens to music. Based on the properties, a piece of music is mapped into a point in the property space and the time is converted into the weight of the point. At this time, if we select and analyze the group which is selected by user frequently, we can understand user's taste. However, it is not easy to predict how many groups are formed. To solve this problem, we apply the K-means clustering algorithm to the weighted points. We modified the K-means algorithm so that the number of clusters is dynamically changed. This manner limits a diameter so that we can apply this algorithm effectively when we know the range of data. By this algorithm we can find the center of each group and recommend the similar music with the group. We also consider the time when music is released. When recommending, the system selects pieces of music which is close to and released contemporarily with the user's preference. We perform experiments with one hundred pieces of music. The result shows that our proposed algorithm is effective.
Kyoung Min Nam;Yu Rim Park;Ji Young Jung;Do Hyun Kim;Hyon Hee Kim
The Transactions of the Korea Information Processing Society
/
v.13
no.8
/
pp.367-373
/
2024
The growth of mobile devices and network infrastructure has brought significant changes to the music industry. Online streaming services has allowed music consumption without constraints of time and space, leading to increased consumer engagement in music creation and sharing activities, resulting in a vast accumulation of music data. In this study, we define metadata as "song sentences" by using a user's playlist. To calculate similarity, we embedded them into a high-dimensional vector space using skip-gram with negative sampling algorithm. Performance eva luation results indicated that the recommended music algorithm, utilizing singers, genres, composers, lyricists, arrangers, eras, seasons, emotions, and tag lists, exhibited the highest performance. Unlike conventional recommendation methods based on users' behavioral data, our approach relies on the inherent information of the tracks themselves, potentially addressing the cold start problem and minimizing filter bubble phenomena, thus providing a more convenient music listening experience.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.