• 제목/요약/키워드: 음악장르 자동구분

검색결과 3건 처리시간 0.022초

생성적 적대 신경망(GAN)을 이용한 딥러닝 음악 장르 분류 시스템 모델 개선 (Deep Learning Music Genre Classification System Model Improvement Using Generative Adversarial Networks (GAN))

  • 배준
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.842-848
    • /
    • 2020
  • 아이튠즈, 스포티파이, 멜론 등 음악시장은 바야흐로 스트리밍의 시대로 접어들었고, 음악 소비자의 취향에 맞는 음악 선곡과 제안을 위해 음악장르 자동 구분 시스템에 대한 요구와 연구가 활발하다. 이전 논문에서 제안한 소프트 맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템을 더욱 발전시켜 생성적 적대 신경망(GAN)을 이용하여 이전 시스템의 미흡한 점이었던 장르 미분류 곡들에 대한 정확도를 높이는 방법을 제안한다. 이전 연구에서는 전체 곡을 작은 샘플 로 나누고 각각의 샘플을 CNN 분석하여 그 결과들의 총합으로 장르 구분을 하는 투표 시스템으로 곡 장르분류 정확도를 높일 수 있었다. 하지만 곡의 스펙트로그램이 곡의 장르를 파악하기에 모호한 곡의 경우에는 미분류 곡으로 남겨놓을 수밖에 없었다. 이 논문에서는 생성적 적대 신경망을 이용하여 미분류 곡의 스펙트로그램을 판독하기 쉬운 장르의 스펙트로그램으로 바꾸어 미분류 곡의 장르 구분 정확도를 높이는 시스템을 제안하고 그 실험결과 기존 방식에 비해 우수한 결과를 도출해낼 수 있었다.

소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템 (Deep Learning Music genre automatic classification voting system using Softmax)

  • 배준;김장영
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.27-32
    • /
    • 2019
  • 인간이 가진 뛰어난 능력 중의 하나인 곡 분류 과정을 딥러닝 알고리즘을 통해 구현하는 연구는 단일데이터를 이용한 유니모달 모델, 멀티모달 모델, 뮤직비디오를 이용한 멀티모달 방식 등이 있다. 이 연구에서는 곡의 스펙트로그램을 짧은 샘플들로 분할하여 각각을 CNN으로 분석한 뒤 그 결과를 투표하는 시스템을 제안하여 더 좋은 결과를 얻었다. 딥러닝 알고리즘 중 CNN이 RNN에 비해 음악 장르 구분에 있어 우수한 성능을 보였으며 CNN과 RNN을 같이 적용했을 때 성능이 좋아짐을 알 수 있었다. 음악샘플을 나누어 각각의 CNN 결과를 투표하는 시스템이 이전 모델에 비해 좋은 결과를 나타내었고 이 모델에 Softmax 레이어를 추가한 모델이 가장 좋은 성능을 보였다. 디지털 미디어의 폭발적인 성장과 수많은 스트리밍 서비스 속에서 음악장르의 자동분류에 대한 필요는 점점 증가하고 있는 추세이다. 향후 연구에서는 미분류 곡의 비율을 낮추고 최종적으로 미분류된 곡들의 장르구분에 대한 알고리즘을 개발할 필요가 있을 것이다.

음악정보와 음악적 성향 분석 및 협업 필터링을 이용한 음악추천시스템 (Music information and musical propensity analysis, and music recommendation system using collaborative filtering)

  • 공민서;홍진주;최재현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.533-536
    • /
    • 2015
  • 모바일 음악 시장이 점차 커지고 있다. 하지만 현재 적용되는 서비스는 사용자가 선호할 만한 음악을 추천하기에는 정확도가 떨어진다. 본 연구에서는 음악 정보와 사용자의 음악적 성향을 분석해 협업 필터링기법으로 사용자가 보다 선호하는 음악을 자동으로 추천해주는 음악 추천 시스템을 제안한다. 본 시스템은 음원의 메타데이터에서 장르 데이터를 추출해서 장르별로 구분하고, STFT기법의 ZCR, Spectral roll-off, Spectral flux의 요소 벡터값을 추출하여 유사한 음원끼리 군집화를 한 후, TF-IDF기법으로 각 음원 가사의 무드를 분류한 다음, 이 요소들로 협업 필터링기법을 이용해 유사한 취향의 사용자를 발견해 자동 음악 추천을 하는 시스템을 제안한다.

  • PDF