• Title/Summary/Keyword: 음악장르 자동구분

Search Result 3, Processing Time 0.017 seconds

Deep Learning Music Genre Classification System Model Improvement Using Generative Adversarial Networks (GAN) (생성적 적대 신경망(GAN)을 이용한 딥러닝 음악 장르 분류 시스템 모델 개선)

  • Bae, Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.842-848
    • /
    • 2020
  • Music markets have entered the era of streaming. In order to select and propose music that suits the taste of music consumers, there is an active demand and research on an automatic music genre classification system. We propose a method to improve the accuracy of genre unclassified songs, which was a lack of the previous system, by using a generative adversarial network (GAN) to further develop the automatic voting system for deep learning music genre using Softmax proposed in the previous paper. In the previous study, if the spectrogram of the song was ambiguous to grasp the genre of the song, it was forced to leave it as an unclassified song. In this paper, we proposed a system that increases the accuracy of genre classification of unclassified songs by converting the spectrogram of unclassified songs into an easy-to-read spectrogram using GAN. And the result of the experiment was able to derive an excellent result compared to the existing method.

Deep Learning Music genre automatic classification voting system using Softmax (소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템)

  • Bae, June;Kim, Jangyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Research that implements the classification process through Deep Learning algorithm, one of the outstanding human abilities, includes a unimodal model, a multi-modal model, and a multi-modal method using music videos. In this study, the results were better by suggesting a system to analyze each song's spectrum into short samples and vote for the results. Among Deep Learning algorithms, CNN showed superior performance in the category of music genre compared to RNN, and improved performance when CNN and RNN were applied together. The system of voting for each CNN result by Deep Learning a short sample of music showed better results than the previous model and the model with Softmax layer added to the model performed best. The need for the explosive growth of digital media and the automatic classification of music genres in numerous streaming services is increasing. Future research will need to reduce the proportion of undifferentiated songs and develop algorithms for the last category classification of undivided songs.

Music information and musical propensity analysis, and music recommendation system using collaborative filtering (음악정보와 음악적 성향 분석 및 협업 필터링을 이용한 음악추천시스템)

  • Gong, Minseo;Hong, Jinju;Choi, Jaehyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.533-536
    • /
    • 2015
  • Mobile music market is growing. However, services what are applied recently are inaccurate to recommend music that a user is worth to prefer. So, this paper suggests music recommend system. This system recommend music that users prefer analyzing music information and user's musical propensity and using collaborative filtering. This system classify genre and extract factors what can be get using STFT's ZCR, Spectral roll-off, Spectral flux. So similar musics are clustered by these factors. And then, after divide mood of music's lyric, it finally recommend music automatically using collaborative filtering.

  • PDF