• Title/Summary/Keyword: 음소 오류

Search Result 61, Processing Time 0.026 seconds

Key-word Error Correction System using Syllable Restoration Algorithm (음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.165-172
    • /
    • 2010
  • There are two method of error correction in vocabulary recognition system. one error pattern matting base on method other vocabulary mean pattern base on method. They are a failure while semantic of key-word problem for error correction. In improving, in this paper is propose system of key-word error correction using algorithm of syllable restoration. System of key-word error correction by processing of semantic parse through recognized phoneme meaning. It's performed restore by algorithm of syllable restoration phoneme apply fluctuation before word. It's definitely parse of key-word and reduced of unrecognized. Find out error correction rate using phoneme likelihood and confidence for system parse. When vocabulary recognition perform error correction for error proved vocabulary. system performance comparison as a result of recognition improve represent 2.3% by method using error pattern learning and error pattern matting, vocabulary mean pattern base on method.

The Modelling of Prosodic Phrasing and Segmental Duration using CART (CART를 이용한 운율구 추출 및 음소 지속 시간 모델링)

  • 이상호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.135-138
    • /
    • 1998
  • 본 논문에서는 트리 기반 모델링 기법 중 하나인 CART(Classification And Regression Trees) 방법을 이용하여, 운율구 추출, 운율구 사이의 휴지 기간, 음소 지속 시간을 모델링 하고자 한다. 총 400문장(약 33분)의 코퍼스를 수집한 후, 그 중 240문장(약 20분)을 이용하여 결정 트리와 회귀 트리를 학습시키고 160문장(약 13분)에 대해 실험하였다. 운율구 경계를 결정하는 결정 트리의 오류율은 14.6%이었고, 운율구 사이의 휴지 기간과 음소 지속 시간을 예측하는 회귀 트리들의 평균 제곱 오류근(RMSE)이 각각 132.61msec, 21.97msec이었다.

Analysis of Error Characteristics and Usabilities for Korean Consonant Perception Test (한국자음지각검사의 오류특성 및 유용성 분석)

  • Kim, Dong Chang;Kim, Jin Sook;Lee, Kyoung Won
    • 재활복지
    • /
    • v.18 no.4
    • /
    • pp.295-314
    • /
    • 2014
  • The purpose of this study was to supply the baseline data for auditory rehabilitation in the field through error type and rate of the phoneme which the hearing impaired feel difficulty to discriminate. Thirty participants with sensorineural hearing loss heard KCPT lists through recorded voice by male and female to get the data about error type and KCPT score accordance with talker's gender. In the initial consonant test list, /ㄷ/, /ㅂ/, /ㅃ/, /ㅉ/, /ㅌ/ showed more than 30% error rate while /ㄱ/and /ㄷ/ showed in final consonant test list. The most common error type was the initial consonant substitution or the final consonant substitution for the initial or final consonant test lists. Talker's gender effect was not signigicant showing no statistical difference between the scores when compared results from male voice and female voice. It means that KCPT can be used regardless of talker's gender in clinics.

A Study on Automatic Phoneme Segmentation of Continuous Speech Using Acoustic and Phonetic Information (음향 및 음소 정보를 이용한 연속제의 자동 음소 분할에 대한 연구)

  • 박은영;김상훈;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.4-10
    • /
    • 2000
  • The work presented in this paper is about a postprocessor, which improves the performance of automatic speech segmentation system by correcting the phoneme boundary errors. We propose a postprocessor that reduces the range of errors in the auto labeled results that are ready to be used directly as synthesis unit. Starting from a baseline automatic segmentation system, our proposed postprocessor trains the features of hand labeled results using multi-layer perceptron(MLP) algorithm. Then, the auto labeled result combined with MLP postprocessor determines the new phoneme boundary. The details are as following. First, we select the feature sets of speech, based on the acoustic phonetic knowledge. And then we have adopted the MLP as pattern classifier because of its excellent nonlinear discrimination capability. Moreover, it is easy for MLP to reflect fully the various types of acoustic features appearing at the phoneme boundaries within a short time. At the last procedure, an appropriate feature set analyzed about each phonetic event is applied to our proposed postprocessor to compensate the phoneme boundary error. For phonetically rich sentences data, we have achieved 19.9 % improvement for the frame accuracy, comparing with the performance of plain automatic labeling system. Also, we could reduce the absolute error rate about 28.6%.

  • PDF

The Error Pattern Analysis of the HMM-Based Automatic Phoneme Segmentation (HMM기반 자동음소분할기의 음소분할 오류 유형 분석)

  • Kim Min-Je;Lee Jung-Chul;Kim Jong-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.213-221
    • /
    • 2006
  • Phone segmentation of speech waveform is especially important for concatenative text to speech synthesis which uses segmented corpora for the construction of synthetic units. because the quality of synthesized speech depends critically on the accuracy of the segmentation. In the beginning. the phone segmentation was manually performed. but it brings the huge effort and the large time delay. HMM-based approaches adopted from automatic speech recognition are most widely used for automatic segmentation in speech synthesis, providing a consistent and accurate phone labeling scheme. Even the HMM-based approach has been successful, it may locate a phone boundary at a different position than expected. In this paper. we categorized adjacent phoneme pairs and analyzed the mismatches between hand-labeled transcriptions and HMM-based labels. Then we described the dominant error patterns that must be improved for the speech synthesis. For the experiment. hand labeled standard Korean speech DB from ETRI was used as a reference DB. Time difference larger than 20ms between hand-labeled phoneme boundary and auto-aligned boundary is treated as an automatic segmentation error. Our experimental results from female speaker revealed that plosive-vowel, affricate-vowel and vowel-liquid pairs showed high accuracies, 99%, 99.5% and 99% respectively. But stop-nasal, stop-liquid and nasal-liquid pairs showed very low accuracies, 45%, 50% and 55%. And these from male speaker revealed similar tendency.

Stochastic Pronunciation Lexicon Modeling for Large Vocabulary Continous Speech Recognition (확률 발음사전을 이용한 대어휘 연속음성인식)

  • Yun, Seong-Jin;Choi, Hwan-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • In this paper, we propose the stochastic pronunciation lexicon model for large vocabulary continuous speech recognition system. We can regard stochastic lexicon as HMM. This HMM is a stochastic finite state automata consisting of a Markov chain of subword states and each subword state in the baseform has a probability distribution of subword units. In this method, an acoustic representation of a word can be derived automatically from sample sentence utterances and subword unit models. Additionally, the stochastic lexicon is further optimized to the subword model and recognizer. From the experimental result on 3000 word continuous speech recognition, the proposed method reduces word error rate by 23.6% and sentence error rate by 10% compare to methods based on standard phonetic representations of words.

  • PDF

A study on Auto-Segmentation Improvement for a Large Speech DB (대용량 음성 D/B 구축을 위한 AUTO-SEGMENTATION에 관한 연구)

  • Lee Byong-soon;Chang Sungwook;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.209-212
    • /
    • 2000
  • 본 논문은 음성인식에 필요한 대용량 음성 D/B 구축을 위한 auto-segmentation의 향상에 관한 논문이다. 50개의 우리말 음소(잡음, 묵음 포함)를 정하고 음성특징으로 MFCC(Mel Frequency Cepstral Coefficients), $\Delta$MFCC, $\Delta\Delta$MFCC, 39차를 추출한 다음 HMM 훈련과 CCS(Constrained Clustering Segmentation) 알고리즘(1)을 사용하여auto-segmentation을 수행하였다. 이 과정에서 대부분의 음소는 오류범위$(\pm25ms)$ 안에서 분절이 이루어지지만, 짧은 묵음, 모음+유성자음('ㅁ', 'ㄴ', 'ㄹ', 'o') 등에서 자주 오류범위를 넘어 분절이 발생하였다. 이러한 음운환경에 따른 경계의 오류를 구간별로 Wavelet 변환 신호의 MLR(Maximum Likelihood Ratio) 값을 이용, 기존 문제점을 보완하여 오류의 범위를 줄임으로서 auto-segmentation의 성능 향상을 얻을 수 있었다.

  • PDF

Phoneme Recognition and Error in Postlingually Deafened Adults with Cochlear Implantation (언어습득 이후 난청 성인 인공와우이식자의 음소 지각과 오류)

  • Choi, A.H.;Heo, S.D.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • The aim of this study was to investigate phoneme recognition in postlingually deafened adults with cochlear implantation. 21-cochlear implantee were participated. They was used cochlear implants more than 1 year. In order to measure consonant performance abilities, subjects were asked for 18 items of Korean consonants in a "aCa" condition with audition alone. The scores ranged from 11 to 86 ($60{\pm}17$)%. The consonant performance abilities correlated with implanted hearing threshold level, significantly (p<.046). This results suggest that consonant performance abilities of postlingual deafened adults cochlear implantee be important for implanted hearing. They had higher correct rates for fricatives and affricatives with distinctive frequency bands than for plosives, liquids & nasals with the same or adjacent frequency bands. All subjects had confusion patterns among the consonants of the same manner of articulation. The reason of consonant confusions was caused that they couldn't recognize different intensities and durations of consonants with the same or adjacent frequency bands.

  • PDF

소아의 조음장애

  • 김영태
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.7 no.1
    • /
    • pp.106-112
    • /
    • 1996
  • 조음장애(articulation disorders)란 조음기관(예 : 혀, 입술. 치아, 입천장)을 통하여 말소리가 만들어지는 과정에서의 결함을 나타내는데, 이러한 조음장애를 보이는 아동은 '불명료한' 구어를 사용하게 되므로 해서 결국 의사소통의 어려움을 나타내게 된다. 음소를 생략하거나, 다른 음소로 대치하거나, 또는 같은 음소내에서 소리를 왜곡시키는 조음 장애 현상들은 순수 조음 장애 아동들 뿐 아니라, 정신지체, 청각장애, 구개파열, 뇌성마비 등의 장애자들에게서 중복적인 결함으로 나타나기도 한다. 본고에서는 소아의 조음장애를 다루는 임상가가 알아두어야 할 관련 요인들, 조음 오류 평가. 그리고 치료방법에 대하여 고찰하고자 한다.

  • PDF

A Study on the Recognition-Rate Improvement by the Keyword Spotting System using CM Algorithm (CM 알고리즘을 이용한 핵심어 검출 시스템의 인식률 향상에 관한 연구)

  • Won Jong-Moon;Lee Jung-Suk;Kim Soon-Hyob
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.81-84
    • /
    • 2001
  • 본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.

  • PDF