• Title/Summary/Keyword: 음성 자동 분류

Search Result 51, Processing Time 0.029 seconds

Categorization and Analysis of Error Types in the Korean Speech Recognition System (한국어 음성 인식 시스템의 오류 유형 분류 및 분석)

  • Son, Junyoung;Park Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.144-151
    • /
    • 2021
  • 딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.

  • PDF

Automatic detection and severity prediction of chronic kidney disease using machine learning classifiers (머신러닝 분류기를 사용한 만성콩팥병 자동 진단 및 중증도 예측 연구)

  • Jihyun Mun;Sunhee Kim;Myeong Ju Kim;Jiwon Ryu;Sejoong Kim;Minhwa Chung
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.45-56
    • /
    • 2022
  • This paper proposes an optimal methodology for automatically diagnosing and predicting the severity of the chronic kidney disease (CKD) using patients' utterances. In patients with CKD, the voice changes due to the weakening of respiratory and laryngeal muscles and vocal fold edema. Previous studies have phonetically analyzed the voices of patients with CKD, but no studies have been conducted to classify the voices of patients. In this paper, the utterances of patients with CKD were classified using the variety of utterance types (sustained vowel, sentence, general sentence), the feature sets [handcrafted features, extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), CNN extracted features], and the classifiers (SVM, XGBoost). Total of 1,523 utterances which are 3 hours, 26 minutes, and 25 seconds long, are used. F1-score of 0.93 for automatically diagnosing a disease, 0.89 for a 3-classes problem, and 0.84 for a 5-classes problem were achieved. The highest performance was obtained when the combination of general sentence utterances, handcrafted feature set, and XGBoost was used. The result suggests that a general sentence utterance that can reflect all speakers' speech characteristics and an appropriate feature set extracted from there are adequate for the automatic classification of CKD patients' utterances.

An improved automatic segmentation algorithm (자동 음성 분할 시스템의 성능 향상)

  • Kim Mu Jung;Kwon Chul Hong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.45-48
    • /
    • 2002
  • 본 논문에서는 한국어 음성 합성기 데이터베이스 구축을 위하여 HMM을 이용하여 자동으로 음소경계를 추출하고, 음성 파라미터를 이용하여 그 결과를 보정하는 반자동 음성분할 시스템을 구현하였다. 개발된 시스템은 16KHz로 샘플링된 음성을 대상으로 삼았고, 레이블링 단위인 음소는 39개를 선정하였고, 음운현상을 고려한 확장 모노폰도 선정하였다. 그리고 언어학적 입력방식으로는 음소표기와 철자표기를 사용하였으며, 패턴 매칭 방법으로는 HMM을 이용하였다. 유성음/무성음/묵음 구간 분류에는 ZCR, Log Energy, 주파수 대역별 에너지 분포 등의 파라미터를 사용하였다. 개발된 시스템의 훈련된 음성은 정치, 경제, 사회, 문화, 날씨 등의 코퍼스를 사용하였으며, 성능평가를 위해 훈련에 사용되지 않은 문장 데이터베이스에 대해서 자동 음성 분할 실험을 수행하였다. 실험 결과, 수작업에 의해서 분할된 음소경계 위치와의 오차가 10ms 이내가 $87\%$, 30ms 이내가 $91\%$가 포함되었다.

  • PDF

Sentence Type Identification in Korean Applications to Korean-Sign Language Translation and Korean Speech Synthesis (한국어 문장 유형의 자동 분류 한국어-수화 변환 및 한국어 음성 합성에의 응용)

  • Chung, Jin-Woo;Lee, Ho-Joon;Park, Jong-C.
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.25-35
    • /
    • 2010
  • This paper proposes a method of automatically identifying sentence types in Korean and improving naturalness in sign language generation and speech synthesis using the identified sentence type information. In Korean, sentences are usually categorized into five types: declarative, imperative, propositive, interrogative, and exclamatory. However, it is also known that these types are quite ambiguous to identify in dialogues. In this paper, we present additional morphological and syntactic clues for the sentence type and propose a rule-based procedure for identifying the sentence type using these clues. The experimental results show that our method gives a reasonable performance. We also describe how the sentence type is used to generate non-manual signals in Korean-Korean sign language translation and appropriate intonation in Korean speech synthesis. Since the method of using sentence type information in speech synthesis and sign language generation is not much studied previously, it is anticipated that our method will contribute to research on generating more natural speech and sign language expressions.

  • PDF

Audio Contents Classification based on Deep learning for Automatic Loudness Control (오디오 음량 자동 제어를 위한 콘텐츠 분류 기술 개발)

  • Lee, Young Han;Cho, Choongsang;Kim, Je Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.320-321
    • /
    • 2018
  • 오디오 음량을 자동으로 제어하는데 있어 음성이 있는 구간에 대해서 음량이 급격히 줄어드는 것을 막기 위해 콘텐츠에 대한 분석이 필요하다. 본 논문에서는 방송 음량을 조절을 위한 세부 기술로 딥러닝 기반의 콘텐츠 분류 기술을 제안한다. 이를 위해 오디오를 무음, 음성, 음성/오디오 혼합, 오디오의 4개로 정의하고 이를 처리하기 위한 mel-spectrogram을 이용하여 2D CNN 기반의 분류기를 정의하였다. 또한 학습을 위해 방송 오디오 데이터를 활용하여 학습/검증 데이터 셋을 구축하였다. 제안한 방식의 성능을 확인하기 위해 검증 데이터셋을 활용하여 정확도를 측정하였으며 약 81.1%의 정확도를 가지는 것을 확인하였다.

  • PDF

Automatic severity classification of dysarthria using voice quality, prosody, and pronunciation features (음질, 운율, 발음 특징을 이용한 마비말장애 중증도 자동 분류)

  • Yeo, Eun Jung;Kim, Sunhee;Chung, Minhwa
    • Phonetics and Speech Sciences
    • /
    • v.13 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • This study focuses on the issue of automatic severity classification of dysarthric speakers based on speech intelligibility. Speech intelligibility is a complex measure that is affected by the features of multiple speech dimensions. However, most previous studies are restricted to using features from a single speech dimension. To effectively capture the characteristics of the speech disorder, we extracted features of multiple speech dimensions: voice quality, prosody, and pronunciation. Voice quality consists of jitter, shimmer, Harmonic to Noise Ratio (HNR), number of voice breaks, and degree of voice breaks. Prosody includes speech rate (total duration, speech duration, speaking rate, articulation rate), pitch (F0 mean/std/min/max/med/25quartile/75 quartile), and rhythm (%V, deltas, Varcos, rPVIs, nPVIs). Pronunciation contains Percentage of Correct Phonemes (Percentage of Correct Consonants/Vowels/Total phonemes) and degree of vowel distortion (Vowel Space Area, Formant Centralized Ratio, Vowel Articulatory Index, F2-Ratio). Experiments were conducted using various feature combinations. The experimental results indicate that using features from all three speech dimensions gives the best result, with a 80.15 F1-score, compared to using features from just one or two speech dimensions. The result implies voice quality, prosody, and pronunciation features should all be considered in automatic severity classification of dysarthria.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.59-66
    • /
    • 2022
  • This research conducted a study classifying gender of speakers by analyzing feature vectors extracted from the voice data. The study provides convenience in automatically recognizing gender of customers without manual classification process when they request any service via voice such as phone call. Furthermore, it is significant that this study can analyze frequently requested services for each gender after gender classification using a learning model and offer customized recommendation services according to the analysis. Based on the voice data of males and females excluding blank spaces, the study extracts feature vectors from each data using MFCC(Mel Frequency Cepstral Coefficient) and utilizes SVM(Support Vector Machine) models to conduct machine learning. As a result of gender classification of voice data using a learning model, the gender recognition rate was 94%.

Speech Recognition Error Detection Using Deep Learning (딥 러닝을 이용한 음성인식 오류 판별 방법)

  • Kim, Hyun-Ho;Yun, Seung;Kim, Sang-Hun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.157-162
    • /
    • 2015
  • 자동통역(Speech-to-speech translation)의 최우선 단계인 음성인식과정에서 발생한 오류문장은 대부분 비문법적 구조를 갖거나 의미를 이해할 수 없는 문장들이다. 이러한 문장으로 자동번역을 할 경우 심각한 통역오류가 발생하게 되어 이에 대한 개선이 반드시 필요한 상황이다. 이에 본 논문에서는 음성인식 오류문장이 정상적인 인식문장에 비해 비문법적이거나 무의미하다는 특징을 이용하여 DNN(Deep Neural Network) 기반 음성인식오류 판별기를 구현하였으며 84.20%의 오류문장 분류성능결과를 얻었다.

  • PDF

On a Duration Control Method of Speech Waveform by an Automatic Pitch Point Detection (자동 피치시점 검출에 의한 음성신호의 지속시간 조절 법에 관한 연구)

  • Park Won;Park HyungBin;Bae MyungJin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.217-220
    • /
    • 2000
  • 일반적으로 고음질 음성합성을 하기 위해서는 합성음의 지속 시간을 변경하여 줌으로써 운율을 조절하는 기법이 필요하다 이에 먼저 고음질용 음성부호화법을 선정하여야 하고 정확한 피치와 피치시점검출을 통해서 음원분류가 되어야한다. 본 논문에서는 제안한 자동 피치시점 검출을 적용해서 운율조절에 필요한 지속시간 조절 법을 제안하고자 한다. 제안한 방법은 시간영역에서 직접 처리하기 때문에 피치동기분석이 용이하고 다른 영역으로의 변환과정이 불필요하다. 결과적으로 파형부호화법을 적용하고 제안한 자동 피치서점 검출에 의한 지속시간 조절법을 적용하였을 때 비교적 우수한 결과를 얻을 수 있었다.

  • PDF

AI-based stuttering automatic classification method: Using a convolutional neural network (인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용)

  • Jin Park;Chang Gyun Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.71-80
    • /
    • 2023
  • This study primarily aimed to develop an automated stuttering identification and classification method using artificial intelligence technology. In particular, this study aimed to develop a deep learning-based identification model utilizing the convolutional neural networks (CNNs) algorithm for Korean speakers who stutter. To this aim, speech data were collected from 9 adults who stutter and 9 normally-fluent speakers. The data were automatically segmented at the phrasal level using Google Cloud speech-to-text (STT), and labels such as 'fluent', 'blockage', prolongation', and 'repetition' were assigned to them. Mel frequency cepstral coefficients (MFCCs) and the CNN-based classifier were also used for detecting and classifying each type of the stuttered disfluency. However, in the case of prolongation, five results were found and, therefore, excluded from the classifier model. Results showed that the accuracy of the CNN classifier was 0.96, and the F1-score for classification performance was as follows: 'fluent' 1.00, 'blockage' 0.67, and 'repetition' 0.74. Although the effectiveness of the automatic classification identifier was validated using CNNs to detect the stuttered disfluencies, the performance was found to be inadequate especially for the blockage and prolongation types. Consequently, the establishment of a big speech database for collecting data based on the types of stuttered disfluencies was identified as a necessary foundation for improving classification performance.