Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.177-180
/
2000
기존의 제한적 단어 인식과는 달리 무제한 단어 음성인식에 있어서는 방대한 용량의 단어 모델을 참조로 인식이 이루어지게 되어, 참조모델과 입력패턴과의 비교를 위한 탐색시간이 너무 길어지게 된다. 본 논문에서 제한하는 방법은 무제한 단어 음성인식 시스템을 구축하기 위해 선행되어야 하는 모음열 사전을 구축하는 것이다. 음성인식시 입력패턴과 참조모델에 속한 모든 단어와의 비교를 수행하지 않고, 입력패턴의 모음열을 인식한 후, 인식된 모음열 단어들만을 참조모델에서 인식 후보로 두어 인식을 수행하게 하여 시간적인 측면에서의 효율성을 기하는 것이다. 결과적으로 본 연구 방법은 무제한 단어 음성인식에서의 실시간 처리라는 점에 주 목적을 두었다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.465-469
/
2022
자동 음성 인식 (Automatic Speech Recognition) 기술이 발달함에 따라 자동 음성 인식 시스템의 성능을 높이기 위한 방법 중 하나로 자동 후처리기 연구(automatic post-processor)가 진행되어 왔다. 후처리기를 훈련시키기 위해서는 오류 유형이 포함되어 있는 병렬 말뭉치가 필요하다. 이를 만드는 간단한 방법 중 하나는 정답 문장에 오류를 삽입하여 오류 문장을 생성하여 pseudo 병렬 말뭉치를 만드는 것이다. 하지만 이는 실제적인 오류가 아닐 가능성이 존재한다. 이를 완화시키기 위하여 Back TranScription (BTS)을 이용하여 후처리기 모델 훈련을 위한 병렬 말뭉치를 생성하는 방법론이 존재한다. 그러나 해당 방법론으로 생성 할 경우 노이즈가 적을 수 있다는 관점이 존재하다. 이에 본 연구에서는 BTS 방법론과 인위적으로 노이즈 강도를 추가한 방법론 간의 성능을 비교한다. 이를 통해 BTS의 정량적 성능이 가장 높은 것을 확인했을 뿐만 아니라 정성적 분석을 통해 BTS 방법론을 활용하였을 때 실제 음성 인식 상황에서 발생할 수 있는 실제적인 오류를 더 많이 포함하여 병렬 말뭉치를 생성할 수 있음을 보여준다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.421-424
/
2015
컴퓨터 기술이 발전하고 컴퓨터 사용이 일반화 되면서 휴먼 인터페이스에 대한 많은 연구들이 진행되어 왔다. 휴먼 인터페이스에서 감정을 인식하는 기술은 컴퓨터와 사람간의 상호작용을 위해 중요한 기술이다. 감정을 인식하는 기술에서 분류 정확도를 높이기 위해 특징벡터를 정확하게 추출하는 것이 중요하다. 본 논문에서는 정확한 피치검출을 위하여 음성신호에서 음성 구간과 비 음성구간을 추출하였으며, Speech Processing 분야에서 사용되는 전 처리 기법인 저역 필터와 유성음 추출 기법, 후처리 기법인 Smoothing 기법을 사용하여 피치 검출을 수행하고 비교하였다. 그 결과, 전 처리 기법인 유성음 추출 기법과 후처리 기법인 Smoothing 기법은 피치 검출의 정확도를 높였고, 저역 필터를 사용한 경우는 피치 검출의 정확도가 떨어트렸다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.733-735
/
2005
최근 음성인식 분야 에서는 잡음 환경에서 좀 더 신뢰도 높은 음성 인식 결과물 얻기 위하여 인식 결과 도출 단계에서 여러 가지 정보를 융합 하는 방법이나 인식결과를 후처리 하여 새로운 결과를 얻어 내는 방법들이 연구 되고 있다. 본 논문에서는 개인 모바일 기기에서의 음성 인식 환경에서 사용자의 발화 패턴 정보를 가지는 문맥 정보를 활용함으로서 잡음 환경에서의 음성 정보 손실에 따른 인식률 하락을 보완하는 방법을 제안한다. 먼저 사용자의 기기 사용 로그나 발화 로그 정보로부터 특정 명령어들의 순차적 발화 패턴을 마이닝하여 문맥 정보를 구성한다. 이 후 음성 발화시에 인식기의 최종 인식 결과에 대한 신뢰도가 떨어진다고 판단될 때 앞서 얻어진 문맥 정보의 신뢰도를 인식기의 각 후보단어들의 인식률과 융합하여 새로운 인식 결과를 도출해 낸다. 이러한 과정에서 인식기 결과에 대한 신뢰성을 판단하는 기준을 실험을 통하여 결정 하였으며 신뢰성이 기준 이하일 경우의 융합 과정을 위하여 후보 단어 인식률과 문맥정보를 적절히 융합할 수 있는 방법을 제안한다.
In this paper, we propose a MWF-PMC noise processing method which enhances the input speech by using Mel-warped Wiener Filtering (MWF) at pre-processing stage and compensates the recognition model by using PMC (Parallel Model Combination) at post-processing stage for speech recognition in noisy environments. The PMC uses the residual noise extracted from the silence region of enhanced speech at pre-processing stage to compensate the clean speech model and thus this method is considered to improve the performance of speech recognition in noisy environments. For recognition experiments we dew.-sampled KLE PBW (Phoneme Balanced Words) 452 word speech data to 8kHz and made 5 different SNR levels of noisy speech, i.e., 0dB. 5dB, 10dB, 15dB and 20dB, by adding Subway, Car and Exhibition noise to clean speech. From the recognition results, we could confirm the effectiveness of the proposed MWF-PMC method by obtaining the improved recognition performances over all compared with the existing combined methods.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2001.06a
/
pp.277-280
/
2001
본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.337-340
/
2002
본 논문에서는 휠체어 시스템에 화자 독립 고립단어 인식을 위한 임베디드 시스템 설계에 관한 내용을 서술한다. 실제 환경에서는 잡음이 포함되어 있어 인식률을 저하시키므로, 잡음을 제거하는 방식 중 가장 간단한 방식인 스펙트럼 차감법(Spectral subtraction method)을 사용하여 잡음을 제거했다 전처리 단계에서는 12차 LPC&Cepstrum 방식을 사용했고, 인식 알고리즘은 DHMM (Discrete Hidden Markov Model)을 전반부 인식기로 사용했다. 이 알고리즘을 적용하기 위해서는 데이터 간소화를 위해 벡터양자화(Vector Quantization) 처리가 전제되어야한다 또한 인식알고리즘은 인식률을 향상을 위해 후처리 인식기로 신경망(MLP:Multi-layer Perceptron)을 통해서 인식률을 향상시켰다 화자 독립 시스템에 맞는 인식 단어의 구성은 총 7개단어로 남녀 총 25명 목소리로 구성하였다. 그리고 하드웨어 구성은 32-bits floating point 방식인 TMS320C32를 적용했고, 메모리 부분은 4Mbyte로 설계를 했으며, 메인보드의 설계는 현재 완성 단계에 있다.
본 논문에서는 한국어 음성인식 시스템의 성능 향상을 위해 청각 주파수 분해능을 가진 MEL-LPC Cepstrum을 음소단위의 HMM(Hidden Markov Model)을 기반으로 하는 인식 시스템에 적용하여 그 결과를 비교 검토하였다. 선형예측(LP) 분석 후에 후처리로서 주파수를 왜곡시킨 LPC-MEL 분석이 계산량이 적고 효과적이라 일반적으로 많이 사용되고 있으나 주파수 분해능은 많이 개선되지 않는다. 따라서 본 논문에서는 주파수 분해능을 개선하기 위해, 원 음성신호로부터 직접적으로 멜주파수로 왜곡시킨 후 선형 예측 분석을 수행하는 MEL-LPC 분석방법을 이용한 음소기반의 화자 독립 음성인식 시스템을 구성하여 기존의 LPC-MEL 분석방법과 비교실험을 통하여 MEL-LPC 분석방법의 유효성을 검토하였다. 실험에 사용한 음성 데이터베이스는 음소 및 단어 인식실험에서는 ETRI 445단어 DB, 연속 숫자음인식 실험에서는 KLE 4연속 숫자음 DB를 사용하였다. 화자 독립 음소인식 실험의 경우, 묵음을 제외한 47개의 유사 음소에 대하여 4상태 3출력의 Left-to-Right 모델을이용하였다. 단어 및 연속 숫자음 인식 실험의 경우, 유한상태 네트워크에 의한 OPDP법을 이용하였다. 화자 독립 음소, 단어 및 4연속 숫자음 인식 실험결과, 기존의 LPC-MEL Cepstrum을 사용한 경우보다 MEL-LPC Cepstum을 사용한 경우가 더 높은 인식률을 나타내어 한국어 음성인식 시스템에서 MEL-LPC 분석방법의 유효성을 확인할 수 있었다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.08a
/
pp.392-395
/
1998
기존의 DP 알고리즘을 이용하여 화자를 인식할 경우 시스템에 등록되어 있는 화자의 수가 증가할수록 처리해야할 데이터의 양이 많아진다. 그러므로 인식률이 저하되고 처리시간이 증가한다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 화자가 발성한 음성신호에서 안정구간내의 일정 파형을 삭제한 후 전이구간을 위주로 DP 알고리즘을 적용하여 화자를 인식한다. 제안한 방법으로 시험한 결과 시스템의 전체 인식률은 기존의 DP 알고리즘을 이용한 결과에 비해 1%의 향상을 보였고 처리시간은 21.6% 감소함을 볼 수 있다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.163-170
/
1996
본 논문에서는 거절기능을 갖는 음성인식 시스템의 시험운용에 대해 소개하였다. 거절기능은 소음 단어에 의한 방식과 인식 결과를 확인하는 방식을 둘 다 병행 사용하여 구현하였다. 소음단어는 필러모델을 정의하여 구현하였으며 인식결과를 확인하기 위해서는 선형변별기를 사용하였다. 연구실에서 구축한 음성 DB로 HMM 파라미터를 추출한 후 시험운용 6개월 동안 구한 음성 DB로 실험한 결과 84.1%의 인식률을 구하였으며 이때 거절률은 0.8%였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.