PaP Smear 테스트는 자궁 경부암 진단에 가장 효율적인 방법으로 알려져 있다. 그러나 이 방법은 높은 위 음성률(false negative error, 15~50%)을 나타내고 있다. 이런 큰 오류율은 주로 다량의 세포 검사에 기인하여, 자동화 시스템의 개발이 절실히 요구되고 있다. 본 논문은 자궁 경부암의 특징인 군집을 이루는 암세포를 인식할 수 있는 시스템을 제안한다. 시스템은 두 부분으로 나누어진다. 첫 단계에서는 저 배율(100배)에서 간단한 영상처리와 최소 근접 트리(Minimum Spanning Tree)를 통해 군집을 이루는 세포를 찾는다. 두 번째 단계서는 고 배율(400배)로 확대하여 군집 세포들로부터 여러 가지 특징을 추출한 후 KNN(k-Neighbor) 방법을 통해 인식하는 단계이다. 50개의 영상 (640X 480, RGB True Color 25 개의 100배 영상 , 25개의 400배 영상)이 실험에 사용되었다. 한 영상을 처리하는데 약 3초 (2.984초) 소요되었으며, 이는 region growing(20초)나 split and merge(58초) 방법 보다 덜 소요되었다. 100배 영상에서 정상과 비정상의 두 그룹으로 나누었을 경우에는 96%의 높은 인식율을 나타내었으나 비정상을 다시 5개의 그룹으로 나누었을 때는 45%로 나타내었다. 이는 영역 추출(segmentation) 단계에서 오류와 트레이닝 데이터의 비정확성에 기인한다. 400배 영상에서는 각각 92%와 30%로 나타내었다. 이는 영역추출 단계에서 사용한 Watershed 방법의 오류로 기인한 것으로 본다.
개인별 건강관리에 대한 관심이 증가함에 따라 다양한 형태의 운동관리 프로그램이 개발되고 있다. 본 연구에서는 개인별 맞춤 트레이닝 관리를 위해 키넥트 센서를 활용한 셀프 운동 교정 프로그램을 개발하였다. 셀프 운동 교정 프로그램의 동작 과정은 다음과 같이 구성된다. 1)키넥트 센서를 활용하여 사용자의 운동 모습을 촬영 2) USB 어댑터를 이용하여 PC와 연동한 후 실시간으로 골격분석 및 좌표를 추출 및 각도를 계산 3)표준 자세의 데이터와 비교, 분석하여 잘못된 동작을 인식 4)잘못된 동작이 인식되면 음성지원을 통해 실시간 알림, 운동이 끝난 후 수집되는 운동 기록(횟수, 영상) 데이터를 데이터베이스에 저장하고 열람 및 관리할 수 있도록 함으로써 효율적으로 개인 운동교정이 가능하다.
This paper describes the effect of new recognition unit, a unit based on semisyllable, and its post processing method. A recognition unit based on semi-syllable expresses Korean connected digit's coarticulation effect. An existing method using semi-syllable limits next models, derived from current recognized models, to make complete connected digit sequence. However, this paper uses a new method to make complete connected digit sequence. The new post-processing method recognizes isolated digit words which include digits sequence from the digit combinations being able to occur from current recognized semi-syllable sequence. This method gives an improved accuracy rate than that of existing method. This new post processing provides two advantages. 1) It corrects current mis-recognized semi-syllable unit. 2) When people say each digit, they say it without regard to saying duration.
웰빙의 바람을 타고 이제 자신의 건강을 관리하는 사람들이 많아지고, 흡연에 대한 좋지 않은 인식이 높아지면서 금연의 열풍이 강하게 불고 있다. 하지만 금연을 한다고 해도 주위의 담배연기는 우리 몸의 건강을 해치기 때문에 담배연기로부터 해방되기는 매우 어렵다. 실제로 흡연하는 배우자를 가진 사람은 그렇지 않은 사람에 비해 심장병 발생률은 40%, 폐암 발생률은 30%가 더 높다. 따라서 본 논문에서는 간접흡연이 인체의 조음기관에 미치는 영향을 분석하기 위해 간접흡연에 따른 음성의 변화를 측정하고 비교, 분석하는 실험을 수행하였다. 이를 위해 간접흡연 전과 후의 음성을 수집하여 음성분석학적 요소 기술 중 Pitch, Jitter, Shimmer 등의 성대 진동 요소를 적용하고 인체 내의 공명기관을 분석하는 Formant를 적용하여 실험을 수행하여 간접흡연이 음성에 미치는 영향을 연구하였다.
본 연구에서는 연결단어 음성인식 상에서 올바른 참조 패턴을 생성하기 위해 Levelbuilding 알고리즘을 이용하여 인식대상 단어의 표본 집합(훈련패턴 집합)으로부터 참조 패턴을 자동적으로 생성하는 알고리즘을 개발하였다. 본 연구는 분한 K-Mans 훈련방법에 기초하고 있으며, Levelbuilding 알고리즘을 이용하여 훈련패턴으로부터 참조 패턴을 생성하는 것이다. 먼저 초기화 과정에서 훈련 패턴을 그에 포함된 단어 수만큼 등간격 분리하여 분리된 단어들을 소속 Cluster로 분류하고 각 Cluster의 Center들로 초기 참조패턴을 구성한다. 그리고 참조패턴, 제어정보 및 Levelbuilding 알고리즘을 이용하여 각 훈련패턴을 분리하고, 분리된 단어들을 소속 Cluster로 분류하여 단어 Cluster집합을 구성한 후 DTW 및 minimax알고리즘을 이용해 각 Cluster의 Center를 구하여 참조 패턴을 생성한다. 참조패턴 구성에 변화가 없을 때까지 전 단계의 참조패턴과 본 알고리즘을 반복 수행하여 최적의 참조패턴을 생성한다. 본 알고리즘을 이용하여 3개 숫자의 연결단어 집합으로부터 영('0')에서 구('9')까지 숫자음에 대한 참조패턴을 자동 생성하였다. 참조패턴 생성과정에서 가정 중요한 처리인 훈련패턴 분리과정을 분석하기 위하여 각 반복과정에서 분리된 정보를 그래프로 도시화하여 확인하였다.
음성인식, 합성 및 분석과 같은 음성신호처리 분야에 있어서 기본주파수 즉, 피치를 정확히 검출하는 것은 중요하다. 그러나 포만트의 영향과 천이진폭의 영향 때문에 음성신호로부터 정확한 피치검출은 매우 어렵다. 따라서 본 논문에서는 음소의 천이나 변동의 영향이 적은 주파수 영역에서 스펙트럼을 평탄화함으로써 포만트의 영향을 제거한 후 피치를 검출한다. 본 논문에서는 새로운 스펙트럼 평탄화 기법을 제안하고 기존의 방법인 LPC법, 켐스트럼법과 비교하여 어느 정도의 우수성을 보이는지 평가하였다. 또한 각각의 방법을 적용하여 기본주파수 (피치)를 검출한 결과는 제안한 방법이 우수함을 보여주고 있다.
4차 산업혁명에 대한 관심이 고조되고 있다. 인공지능은 그 기반기술이며 핵심적인 기술이다. 기록관리 분야에서도 해외를 중심으로 효율적인 업무처리를 위해 인공지능이 도입되고 있는 추세이다. 본 연구에서는 먼저 인공지능의 개념을 제시 한 후, 인공지능이 태동되게 된 배경을 알아보았다, 또 인공지능의 다양한 분야에 대해 알아보고, 획기적인 사례를 중심으로 발전 과정을 살펴보았다. 다양한 영역에서 인공지능의 활용사례를 텍스트 분석, 영상인식 관련, 음성인식 관련하여 살펴보았다. 이 각각의 영역에서 기록정보서비스 측면에서의 적용 사례를 확인해보고, 지능형 기록정보서비스 모듈 구성 및 인터페이스 등 앞으로 기록관리 영역에서 가능한 활용 방안을 알아보고 제시하였다.
현재 자연어 처리(NLP)에 대한 연구는 급속히 발전하고 있다. 자연어 처리는 인간이 일상생활에서 사용하는 언어의 의미를 분석하여 컴퓨터가 처리할 수 있도록 하는 기술로 음성인식, 맞춤법 검사, 텍스트 분류 등 여러 분야에 사용하고 있다. 현재 가장 많이 사용되는 자연어처리 라이브러리는 영어를 기준으로 한 NLTK로 한글처리에 단점을 가지고 있다. 따라서 본 논문에서는 한글 토크나이징(Tokenizing) 라이브러리인 KonLPy와 Soynlp를 소개 후 형태소 분석 및 처리 기법을 분석하고, KonLPy의 단점을 보완한 Soynlp와의 모듈을 비교·분석하여 향후 의료분야에 적합한 자연어 처리 모델로 활용하고자 한다.
본 논문에서는 음성 인식과 화자 인식에서 채널 변이 정규화를 위해 널리 사용되는 전통적인 켑스트럴 평균차감법 (CMS: Cepstral Mean Subtraction)의 성능을 향상시키기 위한 정규화 방법을 제안한다. 기존의 켑스트럴 평균 차감법은 장구간 켑스트럼의 평균으로 채널 성분을 추정하므로 유성음의 포먼트에 의해 채널 성분이 편향되는 단점을 가진다. 제안된 포먼트 평활화 켑스트럴 평균 차감법 (FBCMS; Formant-broadened CMS)은 켑스트럼으로부터 변환된 로그 스펙트럼에서 포먼트 위치를 쉽게 찾을 수 있고, 포먼트는 전극점 모델로 표현되는 성도 전달 함수의 우세 극점에 대응된다는 사실에 근거한다. 따라서 제안된 방법은 켑스트럼으로부터 음성의 포먼트를 구하고, 이로부터 포먼트의 대역폭을 확장한 켑스트럼을 구한 후 평균함으로써 채널 켑스트럼 성분으로부터 우세 극점들의 영향을 제거한다. 전극점 모델의 우세 극점을 얻기 위해 다항식 인수분해 과정을 거치지 않으므로 연산량을 줄일 수 있으며 포먼트에 해당하는 우세 극점만으로 선택적으로 처리할 수 있다. 본 연구에서는 4가지의 모의 채널을 이용하여 전통적인 켑스트럴 평균 차감법, 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CMS) 그리고 제안된 방법의 비교실험을 수행하였다. 실제 채널 켑스트럼과 추정된 채널 켑스트럼과의 거리를 측정하는 실험에서 음성에 의한 편향을 완화시켜 실제 채널에 보다 가까운 평균 켑스트럼을 얻을 수 있음을 확인하였다. 또한 문장독립 화자 식별에서 제안된 방법은 전통적인 켑스트럴 평균 차감법보다 우세하고 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CU)과는 비슷한 결과를 보였다. 결과적으로 제안된 방법은 전통적인 켑스트럴 평균 차감법에 기반하여 효과적인 채널 정규화가 가능하다는 것을 보였다.
음성신호의 프리-엠퍼시스 과정은 고주파 영역의 약화된 성분을 보상하기 위해 사용되어진다. 프리-엠퍼시스 필터의 일반적인 형태는 y(n)=s(n)-A${\cdot}$s(n-1)이고, A 값은 유성음의 경우$0.9{\sim}1.0$ 사이의 값이다. 그리고, A 값은 프리-엠퍼시스의 기울기 값을 반영하고 기존의 방법에서는 R(1)/R(0)를 사용한다. 본 논문에서는 성문특성으로 인해 고주파 특성이 약화되는 것을 보상하기 위하여 새로운 평탄화 기법을 제안한다. 우선 신호 왜곡의 최소화를 위하여 QMF를 사용하였다. QMF를 사용한 후, 각 프레임별 자기상관계수를 사용하여 평탄화 과정을 수행하였다. 실험결과에서는 제안한 방법이 자기상관 방법보다 약화된 고주파 성분을 효과적으로 보상하는 평탄화 특성이 우수한 것으로 나타났다. 그러므로 평탄화 알고리즘은 음성 인식, 음성 분석 및 합성 등과 같은 음성 신호 처리 분야에 광범위하게 적용되어질 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.