• 제목/요약/키워드: 음성학적 문맥

검색결과 16건 처리시간 0.023초

음소결정트리 상태분할을 이용한 한국어 연속음성인식에 관한 연구 (A Study on the Korean Continuous Speech Recognition using Phonetic Decision Tree-based State Splitting)

  • 오세진;황철준;김범국;정호열;정현열
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.277-280
    • /
    • 2001
  • 본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.

  • PDF

한국어 음성인식 성능향상을 위한 문맥의존 음향모델에 관한 연구 (A Study-on Context-Dependent Acoustic Models to Improve the Performance of the Korea Speech Recognition)

  • 황철준;오세진;김범국;정호열;정현열
    • 융합신호처리학회논문지
    • /
    • 제2권4호
    • /
    • pp.9-15
    • /
    • 2001
  • 본 연구에서는 한국어 음성인식 성능향상을 위한 문맥의존 음향 모델을 개선하기 위하여 한국어 음성학적 지식과 결정트리를 접목한 음소결정트리 기반 상태분할 알고리즘으로 한국어에 적합한 문맥의존 음향 모델에 관해 고찰한다. HMM (Hidden Markov Model)의 각 상태를 네트워크로 연결하여 문맥의존 음향모델로 표현하는 HM-Net(Hidden Markov Network)이 있는데 이는 SSS(Successive State Splitting) 알고리즘으로 작성한다. 이 방법은 음향 모델의 상태공유관계와 모델의구조를 결정하는데 효율적이지만 모델을 학습할때 문맥환경에 따라 출현하지 않는 문맥이 존재하는 문제점이 있다 본 연구에서는 이러한 문제점을 해결하기 위해 2진 결정트리와 SSS 알고리즘의 장점을 결합하여 문맥방향 상태분할을 수행할 때 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어에 따라 상태분할 하는 방법으로서 PDT-SSS(Phonetic Decision Tree-based SSS) 알고리즘을 적용한다. 적용한 방법으로 작성한 문맥의존 음향 모델의 유효성을 확인하기 위해 국어공학센터 (KLE)m이 452 단어와 항공편 예약관련 200문장(YNU 200)에 대해 화자독립 음소, 단어 및 연속음성인식 실험을 수행하였다. 인식실험결과, 문맥 의존 음향모델에 대한 화자독립 음소, 단어 및 연속음성 인식실험에서 기존의 단일 HMM 모델보다 향상된 인식률을 보여, 한국어에 적합한 문맥의존 음향 모델을 작성하는데 한국어 음성학적 지식과 음소결정트리 기반 상태분할 알고리즘이 유효함을 확인하였다.

  • PDF

가변어휘 음성인식기 구현에 관한 연구 (A Study on the Implementatin of Vocalbulary Independent Korean Speech Recognizer)

  • 황병한
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제5권
    • /
    • pp.60-63
    • /
    • 1998
  • 본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.

  • PDF

HM-Net을 이용한 한국어 유사음소 단위의 재 정의와 평가 (Definition and Evaluation of Korean Phone-Like Units using Hidden Markov Network)

  • 임영춘;오세진;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.183-186
    • /
    • 2002
  • 최근 음성인식의 인식 단위로서 문맥의존 음향 모델이 널리 사용되고 있다. 이는 음소의 음향학적 특징, 즉 선행 및 후행음소에 의한 중심 음소의 변이음 모델이 문맥독립 모델보다 좀 더 정확하게 모델링 될 수 있기 때문이다. 하지만 강건한 문맥의존 음향 모델을 작성하기 위해서는 모델 파라미터의 병합(tying)과 미지의 문맥(unseen context)의 처리를 위한 좀더 정교한 해결 방법이 필요하다. 따라서 본 논문에서는 이점을 고려하여 음향학적 특징과 언어학적 특징을 결합하여 상태 분할을 수행할 수 있도록 SSS(Successive State Splitting) 알고리즘의 문맥 방향 상태 분할에 음소결정트리를 접목한 HM-Net(Hidden Markov Network) 구조 결정법을 도입하였다. 또한 HM-Net은 연속적인 상태 분할에 의해 한국어에서 많이 발생하는 변이음들을 효과적으로 모델링 할 수 있다는 점을 고려하여 본 연구실에서 기존에 사용하던 48 유사음소 단위에서 문맥의존 음향 모델 작성에 불필요한 변이음을 제거하여 39 유사음소 단위를 재 정의하였다. 도입한 방법과 새로 정의한 유사음소 단위의 유효성을 확인하기 위해 고립 단어, 4연속 숫자음, 연속 음성인식에 대해 인식 실험을 수행한 결과, 모든 실험에서 재 정의한 39 유사음소 단위가 문맥종속형 HM-Net 음향모델을 이용한 한국어 음성인식에 효과적임을 확인할 수 있었다. 특히 연속 음성인식 실험의 경우, 기존의 48 유사음소 단위보다 평균 $15.08\%$의 인식률 향상이 있었다.

  • PDF

C++ 언어와 Standard Library 를 이용한 음성인식기 개발 (Development of a Speech Recognition System uSing e++ Language and Standard library)

  • 황규웅
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.74-77
    • /
    • 1998
  • 우리는 C++를 이용하여 음성인식기를 구현하여 기존의 C를 이용한 경우에 비하여 30% 수준의 소스로 표현하였고 인식기의 공동개발, 확장 및 개선, 기술 전수 등이 용이하게 되었으며 이를 음성인식 엔진 및 음성인식 연구를 위한 툴로 사용할 수 있게 되었다. 이 인식기의 특징으로는 연속 음성 및 대화체 음성을 인식할 수 있으며 trigram 언어 모델을 사용하였고 문맥 종속 음소 모델링에서는 기존의 triphone 보다 넓은 문맥을 고려한 n-phone context modeling을 사용하였으며 모델의 선정에는 음성학적 지식을 기반으로 한 질문을 사용한 decision tree를 사용하여 훈련에 나타나지 않은 단어나 문맥인 경우라도 가장 가까운 모델을 선정할 수 있게 하였다. 또, tree lexicon을 사용하여 속도를 개선하였으며 state 단위의 모델 공유를 통해 제한된 데이터를 이용하여 더 많은 모델을 훈련할 수 있어 성능을 개선하였다. 상용화를 염두에 두고 pc에서 구현하였다.

  • PDF

영어초점구문에 나타나는 초점발화의 음향음성학적 특성

  • 김기호
    • 대한음성언어의학회:학술대회논문집
    • /
    • 대한음성언어의학회 2003년도 제19회 학술대회
    • /
    • pp.129-225
    • /
    • 2003
  • 초점에 대한 언급이 Halliday(1967)에 의해 처음으로 시작된 이래로 초점의 개념에 대한 다양한 접근과 많은 논의가 이루어져 왔다. 일반적으로, 초점은 다음과 같이 정의할 수 있다. 첫째, 초점은 문맥에서 복구가 불가능한 요소를 가리킨다. 초점이라는 용어를 최초로 언급한 Halliday (1967)에 따르면, 초점이란 신정보를 가리키며 이전 담화 문맥에서 복구할 수 없는 정보가 곧 초점이다. 둘째, 초점은 전제 (presupposition)와 대응되는 개념이다. Jackendoff(1972)에 따르면, 담화 문맥에서 이루어지는 발화는 화자와 청자 사이에 공유된 정보와 그렇지 않은 정보로 나뉘며, 그 중 공유된 정보가 전제이고 이에 상보적으로 대응되는 비전제 (non-presupposed)가 곧 초점이다. 셋째, 초점은 화제(topic)와 대응되는 개념이다. Sgall(1973)과 Gundel(1974)에 따르면, 하나의 발화는 문맥상 화제와 초점으로 나뉘며 화제는 흔히 문장에서 무엇에 대해 말하려고 하는가'인 반면, 초점은 발화에서 화제를 제외한 나머지 부분으로서 담화에서 '화제에 대해서 서술되고 있는 바'를 나타낸다고 본다. (중략)

  • PDF

음소 모델의 Back-Off 기법을 이용한 어휘독립 음성인식기의 성능개선 (Performance Improvement of Vocabulary Independent Speech Recognizer using Back-Off Method on Subword Model)

  • 구동욱;최준기;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.19-22
    • /
    • 2000
  • 어휘독립 음성인식이란 음향학적 모델 훈련에 사용하지 않은 어휘들을 인식하는 것이다. 단어모델을 이용한 어휘독립 음성인식 시스템은 발음표기로 변환된 인식대상어휘에 대하여 문맥 종속형 부단어(context dependent subword) 단위로 훈련된 모델을 연결하여 단어 모델을 만들고 이 단어 모델로 인식을 수행한다. 이러한 시스템의 경우 훈련과정에서 나타나지 않는 문맥 종속형 부단어가 인식대상어휘에서 나타나게 되고, 따라서 정확한 단어모델을 구성할 수 없다는 문제점이 있다 본 논문에서는 문맥 종속형 부단어 구분의 계층화를 통한 back-off 선택 방법을 이용하여 새롭게 나타난 문맥 종속형 부단어 대신 연결될 부단어 모델을 찾아내는 방법을 제안한다 제안된 선택 방법은 새롭게 나타난 문맥 종속형 부단어를 포함하는 상위의 부단어를 찾아내는 방법이다. 실험 결과 10단어 세트에서 $97.5\%$ 50단어 세트에서$90.16\%$ 100 단어 세트에서 $82.08\%$의 인식률을 얻었다.

  • PDF

음성학적 문맥에 따른 성문하압의 차이에 관한 연구 (Subglottic Air Pressure in Different Phonetic Context)

  • 박상희;정옥란;석동일
    • 대한후두음성언어의학회지
    • /
    • 제13권1호
    • /
    • pp.23-27
    • /
    • 2002
  • The purpose of the study is to examine differences in subglottic air pressure as a function of phonetic context. The phonetic contexts consisted of $/i:{p^h}i:{p^h}i:/,/{p^h}i:{p^h}i:/, and /{p^h}{p^h}/$. The aerodynamic and phonatory parameters are investigated in 20 female normal adults. All measurements are taken and analysed using Aerophone II voice function analyzer. The aerodynamic parameters are Peak Air Pressure(PAP) and Mean Air Pressure(MAP), and the phonatory parameters are Phonatory Flow Rate(PFR) Maximum SPL(MSPL), Phonatory SPL(PSPL), Phonatory Power (PP), Phonatory Efficiency(PE), and Phonatory $Resistance^*$ 10-5(PR). A one-way ANOVA revealed the following results. First, the aerodynamic parameters are not significantly different. Second, Peak Air Pressure(PAP) and Mean Air Pressure(MAP), as well as the phonatory parameters such as Phonatory Flow Rate(PFR) Maximum SPL(MSPL), Phonatory SPL(PSPL), and Phonatory Efficiency(PE) were significantly different. Therefore, it is advised that clinicians use only aerodynamic parameters but phonatory parameters when using Aerophone II.

  • PDF

RASTA-PLP의 음소 모델 단어 인식기 적용 (Phoneme-Model Word Recognizer on RASTA-PLP)

  • 허창원
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.9-12
    • /
    • 1997
  • 대부분의 음성 파?너 추정 기법은 통신 채널의 주파수 응답에 의해 쉽게 영향을 받는다. 이 논문에서 우리는 음성에서 그러한 안정상태의 스펙트럼 계수에 있어서 좀더 강인한 기법인 RASTA-PLP 방법을 적용하여 파라미터를 추출하고 그 파라미터를 연속 HMM 인식기의 입력으로 사용하여 문맥독립 음소 모델을 훈련하는 과정에서 최적의 모델을 찾게 된다. 여기서는 ETRI 445 DB에 RASTA-PLP를 적용하였을 때 가장 좋은 성능을 나타내는 재추정 횟수와 mixutre 수를 찾는 데 목표를둔다. 문맥독립음소모델은 한국어의 발성학적 근거를 토대로 하고 여기에 묵음(silence)을 추가하여 총 40개로 정의하였다. 문맥독립 음소모델은 3개의 상태를 가지는 전형적인 left-to right CHMM(Continuous Hidden Markov Model)을 이용하여 훈련한다. 그리고 훈련시간을 줄이기 위해 Viterbi beam 탐색법을 적용한다.

  • PDF

어휘독립 환경에서의 가변어휘 음성인식에 관한 연구 (A Study on the Variable Vocabulary Speech Recognition in the Vocabulary-Independent Environments)

  • 황병한
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.369-372
    • /
    • 1998
  • 본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.

  • PDF