• Title/Summary/Keyword: 음성적 변이

Search Result 248, Processing Time 0.035 seconds

Allophonic Information Necessary for Speech Technology (음성공학을 위한 변이음 정보)

  • Lee, Ho-Young;Zhi, Min-Je;Kim, Young-Song
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.131-139
    • /
    • 1993
  • 하나의 음소는 보통 음성환경에 따라 여러 변이음으로 실현된다. 음성합성기로 한국어의 문장을 자연스럽게 합성해 내려고 할 때나 음성인식기가 한국어의 문장을 정확하게 인식하도록 개발하고자 할 때 변이음에 관한 정보는 필수적이다. 따라서 이 논문의 목적은 음성공학에 필요한 변이음 정보를 제공하는 것이다. 이 논문에서는 음성공학에 필요한 한국어의 주오 변이음 규칙들을 간단히 논의하고 몇몇 중요한 변이음들의 음향적 특징을 논의한다.

  • PDF

A Study on the Multiple Pronunciation Dictionary for Spontaneous Speech Recognition (대화체 연속음성인식을 위한 확장 다중발음 사전에 관한 연구)

  • Kang ByungOk
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.65-68
    • /
    • 2003
  • 본 논문에서는 대화체 연속음성인식 과정에서 사용되는 다중발음사전의 개념을 확장하여 대화체 발화에 빈번하게 나타나는 불규칙한 발음변이 현상을 포용하도록 한 확장된 발음사전의 방법을 적용하여 대화체 연속음성인식에서 인식성능의 향상을 가져오게 됨을 실험을 통해 보여준다. 대화체 음성에서 빈번하게 나타나는 음운축약 및 음운탈락, 전형적인 오발화, 양성음의 음성음화 등의 발음변이는 언어모델의 효율성을 떨어뜨리고 어휘 수를 증가시켜 음성인식의 성능을 저하시키고, 또한 음성인식 결과로 나타나는 출력형태가 정형화되지 못하는 단점을 가지고 있다. 이에 이러한 발음변이들을 발음사전에 수용할 때 각각의 대표어휘에 대한 변이발음으로 처리하고, 언어모델과 어휘사전은 대표어휘만을 이용해 구성하도록 한다. 그리고, 음성인식기의 탐색부에서는 각각의 변이발음의 발음열도 탐색하되 대표어휘로 언어모델을 참조하도록 하고, 인식결과를 출력하도록 하여 결과적으로 인식성능을 향상시키고, 정형화된 출력패턴을 얻도록 한다. 본 연구에서는 어절단위 뿐 아니라 의사형태소[2] 단위의 발음사전에도 발음변이를 포용하도록 하여 실험을 하였다. 실험을 통해 어절단위의 다중발음사전 구성을 통해 ERR 10.9%, 의사형태소 단위의 다중발음 사전의 구성을 통해 ERR 4.3%의 성능향상을 보였다.

  • PDF

Automatic Prediction of 'Anti-Search Variants' of Twitter based on Word Embeddings and Phonetic Similarity (단어 임베딩과 음성적 유사도를 이용한 트위터 '서치 방지 단어'의 자동 예측)

  • Lee, Sangah
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.190-193
    • /
    • 2017
  • '서치 방지 단어'는 SNS 상에서 사용자들이 작성한 문서의 검색 및 수집을 피하기 위하여 사용하는 변이형을 뜻한다. 하나의 검색 키워드가 있다면 그와 같은 대상을 나타내는 변이형이 여러 형태로 존재할 수 있으며, 이들 변이형에 대한 검색 결과를 함께 수집할 수 있다면 데이터 확보가 중요하게 작용하는 다양한 연구에 큰 도움이 될 것이다. 본 연구에서는 특정 단어가 주어진 키워드로부터 의미 벡터 상의 거리가 가까울수록, 그리고 주어진 키워드와 비슷한 음성적 형태 즉 발음을 가질수록, 해당 키워드의 변이형일 가능성이 높을 것이라고 가정하였다. 이에 따라 단어 임베딩을 이용한 의미 유사도와 최소 편집 거리를 응용한 음성적 유사도를 이용하여 주어진 검색 키워드와 유사한 변이형들을 제안하고자 하였다. 그 결과 구성된 변이형 후보의 목록에는 다양한 형태의 단어들이 포함되었으며, 이들 중 다수가 실제 SNS 상에서 같은 의미로 사용되고 있음이 확인되었다.

  • PDF

Automatic Prediction of 'Anti-Search Variants' of Twitter based on Word Embeddings and Phonetic Similarity (단어 임베딩과 음성적 유사도를 이용한 트위터 '서치 방지 단어'의 자동 예측)

  • Lee, Sangah
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.190-193
    • /
    • 2017
  • '서치 방지 단어'는 SNS 상에서 사용자들이 작성한 문서의 검색 및 수집을 피하기 위하여 사용하는 변이형을 뜻한다. 하나의 검색 키워드가 있다면 그와 같은 대상을 나타내는 변이형이 여러 형태로 존재할 수 있으며, 이들 변이형에 대한 검색 결과를 함께 수집할 수 있다면 데이터 확보가 중요하게 작용하는 다양한 연구에 큰 도움이 될 것이다. 본 연구에서는 특정 단어가 주어진 키워드로부터 의미 벡터 상의 거리가 가까울수록, 그리고 주어진 키워드와 비슷한 음성적 형태 즉 발음을 가질수록, 해당 키워드의 변이형일 가능성이 높을 것이라고 가정하였다. 이에 따라 단어 임베딩을 이용한 의미 유사도와 최소 편집 거리를 응용한 음성적 유사도를 이용하여 주어진 검색 키워드와 유사한 변이형들을 제안하고자 하였다. 그 결과 구성된 변이형 후보의 목록에는 다양한 형태의 단어들이 포함되었으며, 이들 중 다수가 실제 SNS 상에서 같은 의미로 사용되고 있음이 확인되었다.

  • PDF

Pronunciation of the Korean diphthong /jo/: Phonetic realizations and acoustic properties (한국어 /ㅛ/의 발음 양상 연구: 발음형 빈도와 음향적 특징을 중심으로)

  • Hyangwon Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • The purpose of this study is to determine how the Korean diphthong /jo/ shows phonetic variation in various linguistic environments. The pronunciation of /jo/ is discussed, focusing on the relationship between phonetic variation and the distribution range of vowels. The location in a word (monosyllable, word-initial, word-medial, word-final) and word class (content word, function word) were analyzed using the speech of 10 female speakers of the Seoul Corpus. As a result of determining the frequency of appearance of /jo/ in each environment, the pronunciation type and word class were affected by the location in a word. Frequent phonetic reduction was observed in the function word /jo/ in the acoustic analysis. The word class did not change the average phonetic values of /jo/, but changed the distribution of individual tokens. These results indicate that the linguistic environment affects the phonetic distribution of vowels.

Automatic Generation of Domain-Dependent Pronunciation Lexicon with Data-Driven Rules and Rule Adaptation (학습을 통한 발음 변이 규칙 유도 및 적응을 이용한 영역 의존 발음 사전 자동 생성)

  • Jeon, Je-Hun;Chung, Min-Hwa
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.233-238
    • /
    • 2005
  • 본 논문에서는 학습을 이용한 발음 변이 모델링을 통해 특정 영역에 최적화된 발음 사전 자동 생성의 방법을 제시하였다. 학습 방법을 이용한 발음 변이 모델링의 오류를 최소화 하기 위하여 본 논문에서는 발음 변이 규칙의 적응 기법을 도입하였다. 발음 변이 규칙의 적응은 대용량 음성 말뭉치에서 발음 변이 규칙을 유도한 후, 상대적으로 작은 용량의 음성 말뭉치에서 유도한 규칙과의 결합을 통해 이루어 진다. 본 논문에서 사용된 발음 사전은 해당 형태소의 앞 뒤 음소 문맥의 음운 현상을 반영한 발음 사전이며, 학습 방법으로 얻어진 발음 변이 규칙을 대용량 문자 말뭉치에 적용하여 해당 형태소의 발음을 자동 생성하였다. 발음 사전의 평균 발음의 수는 적용된 발음 변이 규칙의 확률 값들의 한계 값 조정에 의해 이루어졌다. 기존의 지식 기반의 발음 사전과 비교 할 때, 본 방법론으로 작성된 발음 사전을 이용한 대화체 음성 인식 실험에서 0.8%의 단어 오류율(WER)이 감소하였다. 또한 사전에 포함된 형태소의 평균 발음 변이 수에서도 기존의 방법론에서 보다 5.6% 적은 수에서 최상의 성능을 보였다.

  • PDF

A Statistical Model-Based Voice Activity Detection Employing the Conditional MAP Criterion with Spectral Deviation (조건 사후 최대 확률과 음성 스펙트럼 변이 조건을 이용한 통계적 모델 기반의 음성 검출기)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.324-329
    • /
    • 2011
  • In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the conditional maximum a posteriori (CMAP) with deviation. In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the speech activity decisions and spectral deviation in the pervious frame. Experimental results show that the proposed approach yields better results compared to the CMAP-based VAD using the LR test.

Global Soft Decision Based on Improved Speech Presence Uncertainty Tracking Method Incorporating Spectral Gradient (스펙트럼 변이 기반의 향상된 음성 존재 불확실성 추적 기법을 이용한 Global Soft Decision)

  • Kim, Jong-Woong;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.279-285
    • /
    • 2013
  • In this paper, we propose a novel speech enhancement method to improve the performance of the conventional global soft decision which is based on the spectral gradient method applied to the ratio of a priori speech absence and presence probability value (q). Conventional global soft decision scheme used a fixed value of q in accordance with the hypothesis assumed, but the proposed algorithm is a technique for improving the speech absence probability which is applied adaptively variable value of q according to the speech presence or absence in the previous two frames and the conditions of the spectral gradient value. Experimental results show that the proposed improved global soft decision method based on the spectral gradient method yields better results compared to the conventional global soft decision technique based on the performance criteria of the ITU-T P. 862 PESQ (Perceptual Evaluation of Speech Quality).

Acoustic measures from normal and vocal polyp patients (정상인과 후두폴립환자 음성의 음향적 분석)

  • 최흥식;장미숙;이정준
    • Proceedings of the KSLP Conference
    • /
    • 1993.12a
    • /
    • pp.15-15
    • /
    • 1993
  • 정상 성대는 규칙척인 진동을 보이지만 병변이 있는 사람들은 진폭과 시간에 있어서 주기마다의 불규칙성을 보여준다. 이 때 각 주기마다의 시간의 불규칙성은 Jitter를 의미하며 강도의 불규칙성은 Shimmer로 표현된다. 본 연구는 우리나라 정상인 음성의 떨림을 객관적으로 조사해보고 이에 따라 병변이 있는 사람들의 음성의 떨림을 판별할 수 있는 가능성을 알아보기 위하여 저자들은 CSpeech를 이용해 정상인과 후두폴립환자의 jitter, shimmer, S R를 비교해보았다.(중략)

  • PDF

A Method of Scaling Time-Delay Neural Networks for Korean Allophone Recognition (한국어 변이음 인식을 위한 시간지연 신경망의 확장방법)

  • 김수일
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.229-234
    • /
    • 1994
  • 본 논문에서는 한국어 변이음을 인식하기 위한 시간지연 신경망의 확장 방법을 살펴보고 한국어 파열음의 벼이음을 인식하는 실험을 통해 각 확장 방법의 인식 성능을 비교한다. 먼저 변이음을 연속음성인식의 인식단위로 사용하기 위하여 한 음소이모든 변이음을 고려하면서 서로 유사한 변이음을 통합 분류하여 3개의 변이음 군으로 나눈다. 한국어 파열음에 대한 인식 실험결과, 음향 음성학적인 특성에 따라 나누어진 trbah 시간지연 신경망들을 모듈 별로 학습한 후, 계층적으로 통합하여 전체적인 시간지연 신경망을 구성하는 방법이 가장 좋은 성능을 나타내었다. 또한, 변이음 단위 인식이 음소 단위 인식에서 문제가 되는 조음 결합 현상을 해결할 수 있음을 확인하였고, 변이음 인식의 결과인 변이음 열이 제공하는 부가적인 정보를 음운파상에 이용하는 방법에 대해 고찰하였다.

  • PDF