Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.773-774
/
2016
배경잡음은 음성신호의 특징을 왜곡하기 때문에 음성인식 시스템의 인식율 향상의 방해요소가 된다. 따라서 본 논문에서는 배경잡음이 존재하는 환경에서의 음성인식을 실시하기 위해서, 신경회로망과 Mel 주파수 켑스트럼 계수를 사용하여 연속음성 식별 알고리즘을 제안한다. 본 논문의 실험에서는 본 알고리즘을 사용하여 배경잡음이 섞인 음성신호에 대하여 음성인식의 식별율 개선을 실현할 수 있도록 연구를 진행하며, 본 알고리즘이 유효하다는 것을 실험을 통하여 명백히 한다.
Proceedings of the Acoustical Society of Korea Conference
/
1993.06a
/
pp.242-246
/
1993
예측신경회로망 모델은 다층 퍼셉트론을 연속되는 음성특징 벡터간의 비선형예측기로 사용하는 동적인 음성인식 모델이다. 이 모델은 음성의 동적인 특성을 인식에 이용하고 연속음성인식으로의 확장이 용이한 우수한 인식 모델이다. 그러나, 예측신경회로망 모델은 음운학적으로 유사한 음성구간에서의 변별력이 낮다는 문제점이 있다. 그것은 기존의 학습 알고리즘이 다른 어휘와의 거리는 고려하지 않고 대상어휘의 예측오차만 최소화시키기 때문이다. 따라서, 본 논문에서는 직접 인식오차를 최소화시키는 GPD알고리즘에 의해 유사어휘간의 거리를 고려하는 변별력있는 학습 알고리즘을 제안한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.10a
/
pp.616-618
/
2011
본 논문에서는 음성의 특징벡터를 추출하여 음성인식을 위한 인식 알고리즘을 제안한다. 본 논문에서 제안하는 방법은 사람의 음성을 정규화하여 시간지연신경회로망을 사용하여 음성인식을 하는 인식 알고리즘이다. 본 논문에서는 시간지연신경회로망을 이용하여 입력되는 음성정보를 일정시간 동안 학습시킨 후에 새로이 입력되는 정보를 인식하는 수법이다. 본 실험에서는 음성인식률에 의하여 본 알고리즘의 유효성을 확인한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.05a
/
pp.515-517
/
2013
본 논문에서는 잡음 환경 하에서 남녀 성별인식이 가능한 신경회로망에 의한 화자종속 음성인식 알고리즘을 제안한다. 본 논문에서 제안한 음성인식 알고리즘은 남성화자 및 여성화자를 인식하기 위하여 LPC 켑스트럼 계수를 사용하여 신경회로망에 의하여 학습된다. 본 실험에서는 백색잡음 및 자동차잡음에 대하여 신경회로망의 네크워크에 대한 인식결과를 나타낸다. 인식실험의 결과로부터 백색잡음에 대해서는 최대 96% 이상의 인식률, 자동차잡음에 대해서는 최대 88% 이상의 인식률을 구하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.4
/
pp.775-780
/
2013
This paper proposes a speaker-dependent speech recognition algorithm which can classify the gender for male and female speakers in white noise and car noise, using a neural network. The proposed speech recognition algorithm is trained by the neural network to recognize the gender for male and female speakers, using LPC (Linear Predictive Coding) cepstrum coefficients. In the experiment results, the maximal improvement of total speech recognition rate is 96% for white noise and 88% for car noise, respectively, after trained a total of six neural networks. Finally, the proposed speech recognition algorithm is compared with the results of a conventional speech recognition algorithm in the background noisy environment.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.1
/
pp.77-83
/
2013
In this paper, we suggested a method about the improvement of the voice recognition rate and carried out a study on it. In general, voices were detected by applying the most widely-used method, HMM (Hidden Markov Model) algorithm. Regarding the method of detecting voices, the zero crossing ratio was calculated based on the units of voices before the existence of data was identified. Regarding the method of recognizing voices, the patterns shown by the forms of voices were analyzed before they were compared to the patterns which had already been learned. According to the results of the experiment, in comparison with the recognition rate of 80% shown by the existing HMM algorithm, the suggested algorithm based on the recognition of the patterns shown by the forms of voices showed the recognition rate of 92%, reflecting the recognition rate improved by about 12% compared to the existing one.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.10a
/
pp.264-267
/
2010
본 논문에서는 오차역전파 학습 알고리즘을 사용하여 신경회로망을 학습시켜, 각 프레임에서의 음성 및 잡음 구간의 검출에 의한 음성인식 알고리즘을 제안한다. 그리고 신경회로망에 의하여 음성 및 잡음 구간의 검출에 따라서 각 프레임에서 잡음을 제거하는 스펙트럼 차감법을 제안한다. 본 실험에서는 원음성에 백색잡음 및 자동차잡음을 부가하여 음성인식의 인식율을 평가한다. 또한 인식시스템에 의하여 검출된 음성 및 잡음 구간을 이용하여 각 프레임에서의 스펙트럼 차감법에 의한 잡음제거의 실험결과를 나타낸다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.619-620
/
2017
본 논문에서는 음성인식 알고리즘에 매우 중요한 정보를 제공하는 화자의 성별인식을 위하여 신경회로망을 사용하여 잡음 환경 하에서 남성음성 및 여성음성의 화자를 식별하는 성별인식 알고리즘을 제안한다. 본 논문에서 제안하는 신경회로망은 MFCC의 계수를 사용하여 음성의 각 구간에서 남성음성 및 여성음성의 화자를 인식할 수 있는 알고리즘이다. 실험결과로부터 백색잡음이 중첩된 잡음환경 하에서 음성신호의 MFCC의 특징벡터를 사용함으로써 남성음성 및 여성음성의 화자에 대해서 양호한 성별인식 결과가 구해졌다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.4
/
pp.817-822
/
2011
This paper first proposes the speech recognition algorithm by detection of the speech and noise sections at each frame using a neural network training by back-propagation algorithm, then proposes the spectral subtraction method which removes the noises at each frame according to detection of the speech and noise sections. In this experiment, the performance of the proposed recognition system was evaluated based on the recognition rate using various speeches that are degraded by white noise and car noise. Moreover, experimental results of the noise reduction by the spectral subtraction method demonstrate using the speech and noise sections detecting by the speech recognition algorithm at each frame. Based on measuring signal-to-noise ratio, experiments confirm that the proposed algorithm is effective for the speech by corrupted the noise using signal-to-noise ratio.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.3
/
pp.465-470
/
2021
A robust speech recognition technology is required that does not degrade the performance of speech recognition and the quality of the speech when speech recognition is performed in an actual environment of the speech mixed with noise. With the development of such speech recognition technology, it is necessary to develop an application that achieves stable and high speech recognition rate even in a noisy environment similar to the human speech spectrum. Therefore, this paper proposes a speech enhancement algorithm that processes a noise suppression based on the MMSA-STSA estimation algorithm, which is a short-time spectral amplitude method based on the error of the least mean square. This algorithm is an effective nonlinear speech enhancement algorithm based on a single channel input and has high noise suppression performance. Moreover this algorithm is a technique that reduces the amount of distortion of the speech based on the statistical model of the speech. In this experiment, in order to verify the effectiveness of the MMSA-STSA estimation algorithm, the effectiveness of the proposed algorithm is verified by comparing the input speech waveform and the output speech waveform.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.