• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.034 seconds

Large Vocabulary Speech Recognition Using Sub-word Unit HMM (Sub-word 단위 HMM을 이용한 한국어 대용량 어휘 인식)

  • 김홍수;이상운;이건웅;홍재근
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.167-170
    • /
    • 2000
  • 일반적인 한국어 대용량 어휘인식에 사용되는 triphone 모델은 한국어의 특성을 잘 표현한다는 장점이 있으나 인식시간이 길어지게 된다. 이러한 triphone 모델의 단점을 극복하기 위해 음절단위 HMM 모델을 사용하는 방법이 있는데 이 모델은 인식시간을 줄일 수 있으나 triphone 모델에 비해서 인식률이 낮다. 본 논문에서는 음성 인식시간을 단축시키고 조음현상을 고려하기 위하여 초성과 종성 자음은 각각의 biphones으로 나타내고 중성 모음은 1개의 monophone으로 나타내는 모델을 제안하였다. PBW445 음성 데이터베이스에 대한 실험결과, 제안한 인식모델이 triphone 모델에 가까운 인식률을 나타내었으며, 인식시간을 크게 단축하였다.

  • PDF

A study on the recognition of continuous speech using CHMM word spotting (CHMM Word Spotting 기법을 이용한 연속음성 인식에 관한 연구)

  • 김수훈
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.373-377
    • /
    • 1994
  • 연속음성 인식 시스템 구성을 위한 HMM WORD SPOTTING 기법을 검토하였다. 실험에 사용한 HMM WORD SPOTTING 기법은 O(n)DP 기법와 OPDP 법이다. 인식시스템은 파라메터로 멜켑스트럼 만을 사용한 경우와 동적 파라메터인 희귀계수를 결합한 경우의 2종류이며, 인식 알고리즘은 O(n)DP 법과 유한상태 오토마타에 의해 구문제어를 실?나 ONE PASS DP 법으로 나눌 수 있다. 또한 인식 단위는 음절과 단어가 혼합된 형태이고 학습은 모두 음절단위로 실시하였으며 연속음성 25문장에 대하여 O(n)DP법과 OPDP법의 인식결과를 비교하여 연속음성 인식에 구문제어 효과를 검증하였다. 실험 결과 평균 인식률이 O(n)DP 의 경우 각각 90.6%, 90.9%, OPDP 의 경우 각각 98.4%, 98.6%로 유한 상태 오토마타에 의한 구문제어를 이용한 평균 7.5%의 인식률이 향상되었다.

  • PDF

Improving Performance of Continuous Speech Recognition Using Error Pattern Training and Post Processing Module (에러패턴 학습과 후처리 모듈을 이용한 연속 음성 인식의 성능향상)

  • 김용현;정민화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.441-443
    • /
    • 2000
  • 연속 음성 인식을 하는 경우에 많은 에러가 발생한다. 특히 기능어의 경우나 서술어의 경우에는 동시 조음 현상에 의한 음운 변화에 의해 빈번한 에러가 발생한다. 이러한 빈번한 에러를 수정하기 위한 방법에는 언어 모델의 개선과 음향 모델의 개선등을 통한 인식률 향상과 여러 단계의 인식과정을 두어 서로 다른 언어 모델을 적용하는 등의 방법이 있지만 모두 시간과 비용이 많이 들고 각각의 상황에 의존적인 단점이 있다. 따라서 본 논문에서 제안하는 방법은 이것을 수정하기 위해 음성 인식기로부터 인식되어 나온 결과 문장을 정답과 비교, 학습함으로써 빈번하게 에러 패턴을 통계적 방법에 의해 학습하고 후처리 모듈을 이용하여 인식시에 발생하는 에러를 적은 비용과 시간으로 수정할 수 있도록 하는 것이다. 실험은 3000 단어급의 한국어 낭독체 연속 음성을 대상으로 하여 형태소와 의사형태소를 각각 인식단위로 하고, 언어모델로 World bigram과 Tagged word bigram을 각각 적용 실험을 하였다. 형태소, 의사 형태소일 경우 모두 언어 모델을 tagged word bigram을 사용하였을 경우 N best 후보 문장 중 적당한 단어 후보의 분포로 각각 1 best 문장에 비해 12%, 18%정도의 에러 수정하여 문장 인식률 향상에 상당한 기여를 하였다.

A study on the lip shape recognition method for the disabled (장애인의 입 모양 인식기법에 관한 연구)

  • 한성현;권오상;이응혁;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.585-588
    • /
    • 1998
  • 현재의 언어자동인식은 목소리의 음성 정보와 얼굴영상의 화상정보를 병행처리하여 초기의 음성 정보만을 처리한 경우보다 높은 인식률을 가져왔다. 이러한 연구는 언어의 인식에서 뿐만 아니라, 신체가 부자연스러운 장애니에게는 간단한 의미 전달의 수단이나 각종 재활보조기기의 제어 등에도 매우 유용하게 활용될 수 있다. 음성정보처리를 배제한 영상정보처리 면에서, 본 논문의 대상이 되는 장애인은 신체의 부자연스러움으로 인해 처리되는 얼굴의 영상이 정상인과 같은 바른 자세가 되지 못하고, 기울어진다든지 틀어져서 기존의 방법들로는 정상인보다 현저히 낮은 입모양의 인식률을 보인다. 본 논문에서는 기존의 방법들과는 달리 청색 표식을 이용한 색상불할법과 라벨링을 통해 입 모양을 인식하는 방법을 제안하였으며, 이는 장애인과 같은 기울어진 얼굴영상에 대해서도 정상인과 같은 입 모양 인식률을 나타내었다.

  • PDF

User Adjustment Post-Process Using Neural Network In Isolated Word Speech Recognition (고립단어 음성인식에서 신경망을 이용한 사용자 적응형 후처리)

  • Kim, Young-Jin;Kim, Eun-Ju;Kim, Myoung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.736-738
    • /
    • 2005
  • 최근 PDA나 PMP와 같은 개인용 모바일 기기의 인터페이스 개발로써 잡음환경에 강인한 음성인식 기술들이 연구되고 있으며 이러한 방법으로 오류패턴, 순차패턴, 의미정보, 문맥정보와 같이 인식기에 독립적인 정보를 이용하거나 영상 정보와 같이 언어와 성격이 다른 이질적인 정보를 이용하여 후처리를 하는 연구들이 진행되어 왔다. 그러나 인식기와 독립적인 정보로 후처리를 하는 방법들의 인식률은 인식기의 사전 인식률이 주변 잡음에 의해 떨어질 경우 후처리 인식률도 같이 떨어지는 현상이 벌어진다. 따라서 본 논문에서는 주변 잡음으로 인한 인식기의 사전 인식률에 저하를 줄이는 방법으로 사용자 적응형 후처리를 제안한다. 사용자 적응형 후처리에 사용되는 데이터는 사용자의 발화에 대한 인식기의 출력 값들이며, 출력 값들은 화자독립모델에 의해 계산되는 각 단어들의 유사도 들이다. 따라서 화자독립모델의 결과를 사용자 적응형 후처리에 적용한 결과 인식기의 오류를 $58.7\%$ 줄일 수 있었다.

  • PDF

Online Cursive Handwriting Character Recognition Using a Bitmap Parameter (비트맵 파라미터를 이용한 온라인 필기체 문자인식)

  • 석수영;김민정;정호열;정현열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.421-424
    • /
    • 2001
  • 개별적인 인식기를 하나의 단일 인식 시스템으로 구성하여 음성과 문자를 인식할 수 있는 공용인식시스템의 성능향상을 위해 온라인 필기에서 전역적인 정보를 추출할 수 있는 비트맵 파라미터 추출 방법을 제안하였다. 제안된 방식에서는 고속의 파라미터 추출을 위해 보간법을 이용한 재샘플링 과정 대신에 새로운 시간열을 구성하는 방식을 이용한다. 제안한 비트맵 파라미터를 본 연구실에서 개발한 음성/문자 공용인식 시스템에 적용하기 위하여 67개의 자소를 5상태 10천이 CHMM(Continuous Hidden Markov Model)모델로 구성한 다음 인식알고리즘으로서는 상태단위로 지속 시간 정보를 제어하는 OnePassDP법을 이용하였다. 실험결과, 제안한 방법을 이용한 경우, 자소인식률은 61.3%에서 85.3%로 24%의 인식률 향상을 가져왔으며, 글자인식률은 64.3%에서 82.2%로 17.9%의 인식률 향상을 가져와 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

Post-Processing of Speech Recognition Using User Utterance Sequential Pattern (사용자 발화 순차패턴을 이용한 음성인식 후처리)

  • Song, Won-Moon;Kim, Eun-Ju;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.709-711
    • /
    • 2005
  • 최근 음성인식 분야에서는 발화된 음성의 단순한 신호 처리위주의 인식 결과로부터 좀 더 신뢰할 수 있는 결과를 얻기 위하여 여러 가지 후처리 기법들이 연구되고 있다. 본 논문에서는 개인 사용자를 위한 음성 명령어 인식 환경에서 사용자의 발화 정보를 후처리에 적용함으로써 사용자 정보를 고려한 음성인식 후처리 기법을 제안한다. 먼저 이전에 사용했던 음성 명령어들로부터 명령어 발화 순차 패턴 규칙을 추출 한 후 사용자가 사전에 발화한 명령어를 바탕으로 구성된 순차 패턴을 비교하여 순차 규칙상 얻어 질 수 있는 단어를 결정한다. 이렇게 얻어진 단어를 고려하여 음성인식기 인식단어 후보들의 확률값을 적절히 보정한 후 최종 인식 단어를 재결정한다. 이러한 과정에서 적절한 보정을 위하여 발화 순차 패턴의 신뢰도와 인식기의 결과단어를 고려한 보정 방법을 제안한다. 실험을 통하여 제안한 후처리를 이용한 음성인식이 HMM을 이용한 기본 음성인식에 비해 오류율을 $15\%$이상 낮추어 인식률에 상당한 기여를 하였음을 확인할 수 있다.

  • PDF

Voice Recognition Performance Improvement using the Convergence of Bayesian method and Selective Speech Feature (베이시안 기법과 선택적 음성특징 추출을 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Chun
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.7-11
    • /
    • 2016
  • Voice recognition systems which use a white noise and voice recognition environment are not correct voice recognition with variable voice mixture. Therefore in this paper, we propose a method using the convergence of Bayesian technique and selecting voice for effective voice recognition. we make use of bank frequency response coefficient for selective voice extraction, Using variables observed for the combination of all the possible two observations for this purpose, and has an voice signal noise information to the speech characteristic extraction selectively is obtained by the energy ratio on the output. It provide a noise elimination and recognition rates are improved with combine voice recognition of bayesian methode. The result which we confirmed that the recognition rate of 2.3% is higher than HMM and CHMM methods in vocabulary recognition, respectively.

Noise Reduction in Speech Recognition Using Virtual Studio Technology (음성 인식에서 가상 스튜디오 기술을 이용한 잡음 제거 방법)

  • Kim, Dong Hyun;Yoo, Keun Chang;Lim, Jun Su;Baek, Se In;Lee, Yong Kyu
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.21-24
    • /
    • 2018
  • 최근 음성 인식 기술의 발전으로 음성 인식에 관한 연구가 활발히 진행되고 있다. 음성 인식 기술중에서도 외부의 잡음을 제거하여 음성 인식의 정확도를 높이는 연구의 필요성이 대두되고 있다. 본 논문에서는 음성 인식에서 가상 스튜디오 기술을 사용하여 잡음을 제거하는 방법을 제안한다. 음성 인식의 전처리 단계에서 잡음 소거 기능을 가진 VST 플러그 인을 사용하여 외부의 잡음을 제거한다. 제안한 방법을 통해 음성인식의 전처리 과정에서 정제되지 않은 음성 데이터로 인해 발생하는 오류를 방지하고 음성 인식의 인식률을 높일 것으로 기대한다.

A Study on Front-End Processing Methods of Environmental Noise for Speech Recognition (음성인식을 위한 환경잡음의 전처리기법에 관한 검토)

  • 김광수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.17-22
    • /
    • 1997
  • 본 논문에서는 음성 인식기의 성능을 저하시키는 요인중 부가 잡음과 마이크의 변동에 의한 채널 왜곡을 동시에 감소시키는 방법으로 기존의 전처리에 의한 환경덥음처리기법의 단점을 개선한 Histogram 처리기법을 잡음처리에 도입하고 그 유효성을 확인하였다. 도입한 잡음처리기법의 유효성을 확인하기 위하여 기존의 잡음처리기법으로 잘 알려진 여러 가지 방법과 비교하기 위하여 단어 인식실험을 실시하였다. 실험결과, 부가잡음만이 첨가된 경우에 있어서는 일반적으로 알려진 SS, CMN, RASTA등을 이용한 결과 전처리방법을 이용하지 않은 경우의 기본인식률에 비해 SN비에 따라 25% 이상이 인식률 향상을 볼 수 있었다. 특히 CDCN 처리와 H-RASTA를 사용한 경우, 채널왜곡과 부가잡음이 함께 포함된 음성에 대해 SN비에 관계없이 약 15~30%정도의 인식률의 향상을 볼 수 있어 기존 방법으로서는 이글 방법이 우수함을 확인할 수 있었다. 이 위에 Histogram 에 의한 추정법을 적용한 경우 전처리의 성능을 10~15% 정도 성능향상을 가져와 도입한 방법의 유효성을 확인할 수 있었다.

  • PDF