• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.028 seconds

A Study on Recognition Units and Methods to Align Training Data for Korean Speech Recognition) (한국어 인식을 위한 인식 단위와 학습 데이터 분류 방법에 대한 연구)

  • 황영수
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • This is the study on recognition units and segmentation of phonemes. In the case of making large vocabulary speech recognition system, it is better to use the segment than the syllable or the word as the recognition unit. In this paper, we study on the proper recognition units and segmentation of phonemes for Korean speech recognition. For experiments, we use the speech toolkit of OGI in U.S.A. The result shows that the recognition rate of the case in which the diphthong is established as a single unit is superior to that of the case in which the diphthong is established as two units, i.e. a glide plus a vowel. And recognizer using manually-aligned training data is a little superior to that using automatically-aligned training data. Also, the recognition rate of the case in which the bipbone is used as the recognition unit is better than that of the case in which the mono-Phoneme is used.

  • PDF

A Study on Recognition Units for Korean Speech Recognition (한국어 분절음 인식을 위한 인식 단위에 대한 연구)

  • ;;Michael W. Macon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.47-52
    • /
    • 2000
  • In the case of making large vocabulary speech recognition system, it is better to use the segment than the syllable or the word as the recognition mit. In this paper, we study on the proper recognition units for Korean speech recognition. For experiments, we use the speech toolkit of OGI in U.S.A. The result shows that the recognition rate of the case in which the diphthong is established as a single unit is superior to that of the case in which the diphthong is established as two units, i.e. a glide plus a vowel. And also, the recognition rate of the case in which the biphone is used as the recognition unit is better than that of the case in which the mono-phoneme is used.

  • PDF

Rule-based Speech Recognition Error Correction for Mobile Environment (모바일 환경을 고려한 규칙기반 음성인식 오류교정)

  • Kim, Jin-Hyung;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.25-33
    • /
    • 2012
  • In this paper, we propose a rule-based model to correct errors in a speech recognition result in the mobile device environment. The proposed model considers the mobile device environment with limited resources such as processing time and memory, as follows. In order to minimize the error correction processing time, the proposed model removes some processing steps such as morphological analysis and the composition and decomposition of syllable. Also, the proposed model utilizes the longest match rule selection method to generate one error correction candidate per point, assumed that an error occurs. For the purpose of deploying memory resource, the proposed model uses neither the Eojeol dictionary nor the morphological analyzer, and stores a combined rule list without any classification. Considering the modification and maintenance of the proposed model, the error correction rules are automatically extracted from a training corpus. Experimental results show that the proposed model improves 5.27% on the precision and 5.60% on the recall based on Eojoel unit for the speech recognition result.

A study on Gaussian mixture model deep neural network hybrid-based feature compensation for robust speech recognition in noisy environments (잡음 환경에 효과적인 음성 인식을 위한 Gaussian mixture model deep neural network 하이브리드 기반의 특징 보상)

  • Yoon, Ki-mu;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.506-511
    • /
    • 2018
  • This paper proposes an GMM(Gaussian Mixture Model)-DNN(Deep Neural Network) hybrid-based feature compensation method for effective speech recognition in noisy environments. In the proposed algorithm, the posterior probability for the conventional GMM-based feature compensation method is calculated using DNN. The experimental results using the Aurora 2.0 framework and database demonstrate that the proposed GMM-DNN hybrid-based feature compensation method shows more effective in Known and Unknown noisy environments compared to the GMM-based method. In particular, the experiments of the Unknown environments show 9.13 % of relative improvement in the average of WER (Word Error Rate) and considerable improvements in lower SNR (Signal to Noise Ratio) conditions such as 0 and 5 dB SNR.

Korean Phonological Viseme for Lip Synch Based on Phoneme Recognition (음소인식 기반의 립싱크 구현을 위한 한국어 음운학적 Viseme의 제안)

  • Joo Heeyeol;Kang Sunmee;Ko Hanseok
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.70-73
    • /
    • 1999
  • 본 논문에서는 한국어에 대한 실시간 음소 인식을 통한 Lip Synch 구현에 필수요소인 Viseme(Visual Phoneme)을 한국어의 음운학적 접근 방법을 통해 제시하고, Lip Synch에서 입술의 모양에 결정적인 영향을 미치는 모음에 대한 모음 인식 실험 및 결과 분석을 한다.모음인식 실험에서는 한국어 음소 51개 각각에 대해 3개의 State로 이루어진 CHMM (Continilous Hidden Makov Model)으로 모델링하고, 각각의 음소가 병렬로 연결되어진 음소네트워크를 사용한다. 입력된 음성은 12차 MFCC로 특징을 추출하고, Viterbi 알고리즘을 인식 알고리즘으로 사용했으며, 인식과정에서 Bigrim 문법과 유사한 구조의 음소배열 규칙을 사용해서 인식률과 인식 속도를 향상시켰다.

  • PDF

A Study on the Real-time Word Spotting by Continuous density HMM (연속분포 HMM에 의한 실시간 Word Spotting 에 관한 연구)

  • 서상원
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.92-95
    • /
    • 1995
  • 연속분포 HMM을 사용한 실시간 로봇 암 제어 시스템에 대해 기술하고 있다. 본 시스템은 자연스러운 문장의 로봇 암 제어 명령 발성을 받아 핵심단어 인식의 framework을 통한 명령 인식 및 로봇 제어를 구현하고 있다. 로봇 몸체의 부분, 방향, 각도, 동작명령들에 대해 각기 우향 HMM, 이외의 비 핵심어들에 대해서는 이들을 한데 모아 ergodic형 상태천이를 모델링하는 garbage HMM을 형성했는데, 조사, 감탄사 등을 따로 모은 garbage 모델과, silence 및 배경 잡음에 대한 garbage 모델을 형성, 학습 및 인식에 포함시켜 연결단어 인식을 수행함으로써 핵심단어 인식의 효과를 얻었다. 이때 핵심단어들의 사용에 있어 간단한 문법적 제약을 가정하였다. 남성화자 35명을 대상으로 30개 문형에 대해 데이터 수집용 개념적 문장을 구성하여 음성 데이터를 수집하였다. 학습 화자에 대한 제어 명령 인식률은 95% 이상을 나타내고 있으며, 비 학습화자에 대한 인식율은 90% 이상이다. 또한 학습된 단어외의 비 핵심단어들의 사용에 대해서도 긍정적인 인식 성능을 보였다.

  • PDF

A Study on Regression Class Generation of MLLR Adaptation Using State Level Sharing (상태레벨 공유를 이용한 MLLR 적응화의 회귀클래스 생성에 관한 연구)

  • 오세진;성우창;김광동;노덕규;송민규;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.727-739
    • /
    • 2003
  • In this paper, we propose a generation method of regression classes for adaptation in the HM-Net (Hidden Markov Network) system. The MLLR (Maximum Likelihood Linear Regression) adaptation approach is applied to the HM-Net speech recognition system for expressing the characteristics of speaker effectively and the use of HM-Net in various tasks. For the state level sharing, the context domain state splitting of PDT-SSS (Phonetic Decision Tree-based Successive State Splitting) algorithm, which has the contextual and time domain clustering, is adopted. In each state of contextual domain, the desired phoneme classes are determined by splitting the context information (classes) including target speaker's speech data. The number of adaptation parameters, such as means and variances, is autonomously controlled by contextual domain state splitting of PDT-SSS, depending on the context information and the amount of adaptation utterances from a new speaker. The experiments are performed to verify the effectiveness of the proposed method on the KLE (The center for Korean Language Engineering) 452 data and YNU (Yeungnam Dniv) 200 data. The experimental results show that the accuracies of phone, word, and sentence recognition system increased by 34∼37%, 9%, and 20%, respectively, Compared with performance according to the length of adaptation utterances, the performance are also significantly improved even in short adaptation utterances. Therefore, we can argue that the proposed regression class method is well applied to HM-Net speech recognition system employing MLLR speaker adaptation.

Comparative Analysis of Statistical Language Modeling for Korean using K-SLM Toolkits (K-SLM Toolkit을 이용한 한국어의 통계적 언어 모델링 비교)

  • Lee, Jin-Seok;Park, Jay-Duke;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.426-432
    • /
    • 1999
  • 통계적 언어 모델은 자연어 처리의 다양한 분야에서 시스템의 정확도를 높이고 수행 시간을 줄여줄 수 있는 중요한 지식원이므로 언어 모델의 성능은 자연어 처리 시스템, 특히 음성 인식 시스템의 성능에 직접적인 영향을 준다. 본 논문에서는 한국어를 위한 통계적 언어 모델을 구축하기 위한 다양한 언어 모델 실험을 제시하고 각 언어 모델들 간의 성능 비교를 통하여 통계적 언어 모델의 표준을 제시한다. 또한 형태소 및 어절 단위의 고 빈도 어휘만을 범용 언어 모델에 적용할 때의 적용률을 통하여 언어 모델 구축시 어휘 사전 크기 결정을 위한 기초적 자료를 제시한다. 본 연구는 음성 인식용 통계적 언어 모델의 성능을 판단하는 데 앞으로 큰 도움을 줄 수 있을 것이다.

  • PDF

A Study on User Authentication Model based on Voice Recognition for Secure Smartwork Environment (안전한 스마트워크 환경을 위한 음성인식 기반 사용자 인증 모델에 관한 연구)

  • Wi, Yoo-Kyung;Park, Dae-Sik;Kwak, Jin
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.801-804
    • /
    • 2011
  • 정보통신기술의 발달과 스마트 디바이스의 보급률 증가로 인해 과거 사무실 안으로 한정되어 있던 업무공간이 스마트 디바이스를 활용하여 시간과 공간의 제약 없어졌다. 따라서 효율적으로 업무를 지속할 수 있는 스마트워크 환경에 대한 관심과 연구가 증가하고 있다. 그러나 국내의 스마트워크 연구는 초기 단계에 머물러 있으며 스마트워크 환경을 구축하기 위한 사용자 인증 기법에 대한 연구도 부족한 실정이다. 따라서 본 논문에서는 스마트워크 환경에서 안전한 사용자 인증을 위한 음성인식 기반 사용자 인증 기법을 제안한다.

A Study on the Speech Recognition Performance of the Multilayered Recurrent Prediction Neural Network (다층회귀예측신경망의 음성인식성능에 관한 연구)

  • 안점영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.313-319
    • /
    • 1999
  • We devise the 3 models of Multilayered Recurrent Prediction Neural Network(MLRPNN), which are obtained by modifying the Multilayered Perceptron(MLP) with 4 layers. We experimentally study the speech recognition performance of 3 models by a comparative method, according to the variation of the prediction order, the number of neurons in two hidden layers, initial values of connecting weights and transfer function, respectively. By the experiment, the recognition performance of each MLRPNN is better than that of MLP. At the model that returns the output of the upper hidden layer to the lower hidden layer, the recognition performance shows the best value. All MLRPNNs, which have 10 or 15 neurons in the upper and lower hidden layer and is predicted by 3rd or 4th order, show the improved speech recognition rate. On learning, these MLRPNNs have a better recognition rate when we set the initial weights between -0.5 and 0.5, and use the unipolar sigmoid transfer function in the lower hidden layer.

  • PDF