• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.027 seconds

Speaker Normalization using Gaussian Mixture Model for Speaker Independent Speech Recognition (화자독립 음성인식을 위한 GMM 기반 화자 정규화)

  • Shin, Ok-Keun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.437-442
    • /
    • 2005
  • For the purpose of speaker normalization in speaker independent speech recognition systems, experiments are conducted on a method based on Gaussian mixture model(GMM). The method, which is an improvement of the previous study based on vector quantizer, consists of modeling the probability distribution of canonical feature vectors by a GMM with an appropriate number of clusters, and of estimating the warp factor of a test speaker by making use of the obtained probabilistic model. The purpose of this study is twofold: improving the existing ML based methods, and comparing the performance of what is called 'soft decision' method with that of the previous study based on vector quantizer. The effectiveness of the proposed method is investigated by recognition experiments on the TIMIT corpus. The experimental results showed that a little improvement could be obtained tv adjusting the number of clusters in GMM appropriately.

Performance Improvement of Speech Recognition Using Context and Usage Pattern Information (문맥 및 사용 패턴 정보를 이용한 음성인식의 성능 개선)

  • Song, Won-Moon;Kim, Myung-Won
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.553-560
    • /
    • 2006
  • Speech recognition has recently been investigated to produce more reliable recognition results in a noisy environment, by integrating diverse sources of information into the result derivation-level or producing new results through post-processing the prior recognition results. In this paper we propose a method which uses the user's usage patterns and the context information in speech command recognition for personal mobile devices to improve the recognition accuracy in a noisy environment. Sequential usage (or speech) patterns prior to the current command spoken are used to adjust the base recognition results. For the context information, we use the relevance between the current function of the device in use and the spoken command. Our experiment results show that the proposed method achieves about 50% of error correction rate over the base recognition system. It demonstrates the feasibility of the proposed method.

Development of a Korean Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼 (ECHOS) 개발)

  • Kwon Oh-Wook;Kwon Sukbong;Jang Gyucheol;Yun Sungrack;Kim Yong-Rae;Jang Kwang-Dong;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.498-504
    • /
    • 2005
  • We introduce a Korean speech recognition platform (ECHOS) developed for education and research Purposes. ECHOS lowers the entry barrier to speech recognition research and can be used as a reference engine by providing elementary speech recognition modules. It has an easy simple object-oriented architecture, implemented in the C++ language with the standard template library. The input of the ECHOS is digital speech data sampled at 8 or 16 kHz. Its output is the 1-best recognition result. N-best recognition results, and a word graph. The recognition engine is composed of MFCC/PLP feature extraction, HMM-based acoustic modeling, n-gram language modeling, finite state network (FSN)- and lexical tree-based search algorithms. It can handle various tasks from isolated word recognition to large vocabulary continuous speech recognition. We compare the performance of ECHOS and hidden Markov model toolkit (HTK) for validation. In an FSN-based task. ECHOS shows similar word accuracy while the recognition time is doubled because of object-oriented implementation. For a 8000-word continuous speech recognition task, using the lexical tree search algorithm different from the algorithm used in HTK, it increases the word error rate by $40\%$ relatively but reduces the recognition time to half.

Improvement of Recognition Speed for Real-time Address Speech Recognition (실시간 주소 음성인식을 위한 인식 시스템의 인식속도 개선)

  • Hwang Cheol-Jun;Oh Se-Jin;Kim Bum-Koog;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.74-77
    • /
    • 1999
  • 본 논문에서는 본 연구실에서 개발한 주소 음성인식 시스템의 인식 속도를 개선시키기 위하예 새로운 가변 프루닝 문턱치를 적용하는 방법을 제안하고 실험을 통하여 그 유효성을 확인하였다. 기존의 가변 프루닝 문턱치는 일정 프레임이 경과하면 일정 값을 가진 문턱치를 계속하여 감소시켜나가는 방법을 반복하기 때문에, 불필요한 탐색공간을 탐색하게 된다. 본 논문에서 새로이 제안하는 가변 프루닝 문턱치를 채용하는 방법은 처음 일정 구간이 경과되면 일정 문턱치를 감소시키나, 다음 일정 프레임에서는 탐색되어야할 후보에 따라서 문턱치를 변화시켜 프루닝시키기 때문에 탐색공간을 효과적으로 감소시킬 수 있다. 제안된 방법의 유효성을 확인하기 위하여, 본 연구실에서 개발한 한국어 주소 입력 시스템에 적용하였다. 이 시스템은 48개의 연속 HMM 유사음소단위(Phoneme Like Units; PLUs)를 인식의 기본단위로 하고, .사용환경 변화에 의한 인식성능의 저하를 최소화하기 위해 최대사후 확률추정법(Maximum A Posteriori Probability Estimation; MAP)을 사용하며, 인식알고리즘으로는OPDP(One Pass Dynamic Programming)법을 이용하고 있다. 남성화자 3인에 의한 75개의 연결주소명을 이용하여 인식 실험을 수행한 결과 고정 프루닝 문턱치를 적용한 경우 인식률은 평균 $96.0\%$, 인식 시간은 5.26초였고, 기존의 가변 프루닝 문턱치의 경우 인식률은 평균 $96.0\%$, 인식 시간은 5.1초인 데 비하여, 새로운 가변 프루닝 문턱치를 적용찬 경우에는 인식률 저하없이 인식 시간이 4.34초로, 기존에 비해 각각 0.92초, 0.76초 인식 시간이 감소되어 제안한 방법의 유효성을 확인할 수 있었다.는 달리 각 산란 영역에서 그 지수는 1씩 작은 값을 갖는다.향에 따라 음장변화가 크게 다를 것이 예상되므로 이를 규명하기 위해서는 궁극적으로 3차원적인 음장분포 연구가 필요하다. 음향센서를 해저면에 매설할 경우 수충의 수온변화와 센서 주변의 수온변화 사이에는 어느 정도의 시간지연이 존재하게 되므로 이에 대한 영향을 규명하는 것도 센서의 성능예측을 위해서 필요하리라 사료된다.가지는 심부 가스의 개발 성공률을 증가시키기 위하여 심부 가스가 존재하는 지역의 지질학적 부존 환경 및 조성상의 특성과 생산시 소요되는 생산비용을 심도에 따라 분석하고 생산에 수반되는 기술적 문제점들을 정리하였으며 마지막으로 향후 요구되는 연구 분야들을 제시하였다. 또한 참고로 현재 심부 가스의 경우 미국이 연구 개발 측면에서 가장 활발한 활동을 전개하고 있으며 그 결과 다수의 신뢰성 있는 자료들을 확보하고 있으므로 본 논문은 USGS와 Gas Research Institute(GRI)에서 제시한 자료에 근거하였다.ऀĀ耀Ā삱?⨀؀Ā Ā?⨀ጀĀ耀Ā?돀ꢘ?⨀硩?⨀ႎ?⨀?⨀넆돐쁖잖⨀쁖잖⨀/ࠐ?⨀焆덐瀆倆Āⶇ퍟ⶇ퍟ĀĀĀĀ磀鲕좗?⨀肤?⨀⁅Ⴅ?⨀쀃잖⨀䣙熸ጁ↏?⨀

  • PDF

Robust Speech Recognition Using Missing Data Theory (손실 데이터 이론을 이용한 강인한 음성 인식)

  • 김락용;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, we adopt a missing data theory to speech recognition. It can be used in order to maintain high performance of speech recognizer when the missing data occurs. In general, hidden Markov model (HMM) is used as a stochastic classifier for speech recognition task. Acoustic events are represented by continuous probability density function in continuous density HMM(CDHMM). The missing data theory has an advantage that can be easily applicable to this CDHMM. A marginalization method is used for processing missing data because it has small complexity and is easy to apply to automatic speech recognition (ASR). Also, a spectral subtraction is used for detecting missing data. If the difference between the energy of speech and that of background noise is below given threshold value, we determine that missing has occurred. We propose a new method that examines the reliability of detected missing data using voicing probability. The voicing probability is used to find voiced frames. It is used to process the missing data in voiced region that has more redundant information than consonants. The experimental results showed that our method improves performance than baseline system that uses spectral subtraction method only. In 452 words isolated word recognition experiment, the proposed method using the voicing probability reduced the average word error rate by 12% in a typical noise situation.

  • PDF

Performance Improvement of korean Connected Digit Recognition Based on Acoustic Parameters (음향학적 파라메터를 이용한 한국어 연결숫자인식의 성능개선)

  • Kim Seunghi;Kim Hyung Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.44-47
    • /
    • 1999
  • 본 논문에서는 한국어 연결숫자인식에 있어서 모델간의 변별력 향상을 통해 인식률을 높이기 위하여 음향학적 파라메터(Acousticparameter)를 사용하는 짓을 제안한다. 제안된 방법은 음성학적 지식에 근거하여 적절한 주파수 대역별 에너지의 비의 로그값을 추가적인 특징파라메터로 사용한다. 실험결과, 제안된 방법을 사용함으로써 기본 인식시스템에 비해 오류율이 최고 $46\%$ 정도 감소됨을 확인할 수 있었다. 그리고 채널보상 기술을 함께 적용함으로써 $69\%$ 정도의 오류율 감소를 얻었다.

  • PDF

Off-line Character Modeling using HMM (HMM 기반의 오프라인 필기 모델)

  • Sin, Bong-Kee
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.337-340
    • /
    • 2000
  • 음성 인식 및 온라인 필기 인식기 모델로 널리 알려진 은닉 마르코프 모델(HMM)을 오프라인에 적용하려는 시도는 있었지만 아직까지 만족할 만한 성과는 찾아보기 어렵고 인식률도 신경망 등 다른 방법에 의한 시스템에 미치지 못하는 실정이다. 본 연구에서는 온라인 필기 모델 HMM을 오프라인 필기인식에 활용하는 방법 한 가지와 순수하게 오프라인 필기 모델로서 제안된 2D HMM을 기술한다. 두 방법 모두 기존의 HMM 모델링 틀에 기초를 두고 개발하였으며 다양한 국소 변형을 해석하기 위해 동적 계획법에 기반한 알고리즘을 응용하였다. 본 논문에서는 두 가지 독립적인 아이디어 제안에 의의를 두었으며 주요 아이디어만을 간략하게 기술하였다.

  • PDF

Analysis of Elm Topology Optimization Criteria for Handwriting Recognition (필기 데이터 인식을 위한 HMM 구조 최적화 기준에 대한 분석)

  • 박미나;하진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.571-573
    • /
    • 2002
  • 음성인식과 온라인 필기인식에서 우수한 성능을 보이는 은닉 마르코프(HMM)의 HMM의 구조는 휴리스틱 한 방법에 의해 결정되는 것이 일반적이기 때문에 최적의 모델을 선택하는데 어려움이 있다. 이에 본 논문에서는 HMM의 구조를 체계적인 방법으로 정함과 동시에 변별력의 단점을 개선 할 수 있는 방법으로 Anti-likelihood를 이용한 모델간의 변별력을 살펴보고 최적의 모델 선택 기준인 BIC와의 결합하여, 체계적이고 효율적인 최적 모델 선택이 가능한 방법론에 대해 연구하고 필기데이터에 대해 검증한 결과, 기존의 방법보다 파라미터의 수는 감소되고 인식률이 향상됨을 알 수 있다.

  • PDF

Hybrid Speaker Adaptation using Maximum-Likelihood Estimation (MLE를 이용한 하이브리드 화자 적응)

  • 표현아;김세현;오영환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.268-270
    • /
    • 2002
  • 최근 음성 인식 시스템의 성능 향상을 위해 화자 적응 (speaker adaptation)에 대한 연구가 활발히 진행되고 있다. HMM 기반 인식 시스템의 모델 파라미터를 수정하는 화자 적응의 경우, MAP방법과 MLLR 방법에 대한 연구가 주류를 이루고 있다. 두 방법은 adaptation data의 양에 따라서 서로 다른 성능을 보인다. 본 논문에서는 기존 두 방법을 Maximum-likelihood Estimation(MLE)를 이용하여 화자 적응을 수행하는 방법을 제안한다. 제안한 방법을 KAIST 통신연구실에서 구축한 한국어 도시이름 500단어 인식 시스템에 적용하여 adaptation data의 양에 상관없이 항상 높은 성능을 나타냈으며, 기존의 방법에 대해서 최고 4.37%의 인식률 향상을 보였다.

  • PDF

Echo Noise Robust HMM Learning Model using Average Estimator LMS Algorithm (평균 예측 LMS 알고리즘을 이용한 반향 잡음에 강인한 HMM 학습 모델)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.277-282
    • /
    • 2012
  • The speech recognition system can not quickly adapt to varied environmental noise factors that degrade the performance of recognition. In this paper, the echo noise robust HMM learning model using average estimator LMS algorithm is proposed. To be able to adapt to the changing echo noise HMM learning model consists of the recognition performance is evaluated. As a results, SNR of speech obtained by removing Changing environment noise is improved as average 3.1dB, recognition rate improved as 3.9%.