• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.025 seconds

The recognition of word by continuous speech recognition technic (연속 음성 인식 기법을 이용한 단어 음성 인식)

  • 조영훈
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.91-94
    • /
    • 1998
  • 우리만은 영어와는 달리 단어를 공백으로만 구분할 수 없다. 그러므로 대용량 어휘를 갖는 연속 음성을 인식하기 위한 언어모델을 만들기가 매우 어렵다. N-gram의 언어 모델을 우리말 문장에 적용하기 위해 하나의 문장을 한 단어로 구성하여 처리하였다. 우리의 인식시스템을 평가하기 위하여 시스템 공학 연구소에서 제공한 음성을 대상으로 인식률을 계산하였다. 단어의 종류는 452개이며 한명이 이 단어들을 2번씩 발음하고 총70명이 발음한 총 63,280개의 단어에 대하여 92.8%의 인식률을 얻었다. 일간지 사설로부터 추출한 단어를 대상으로 발음 사전을 10K 크기로 만들었다. 음성 모델은 uniphone을 사용하였다.

  • PDF

분별학습에 기반한 전화 숫자음 음성인식

  • Han, Mun-Seong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.7-17
    • /
    • 2001
  • 음성인식 시스템이 있어서 현재 가장 널리 사용되고 있는 Hidden Markov Model(HMM)은 확률 모델을 기반한 것으로 데이터에 대한 통계처리를 학습과정으로 하고 있다. 한국어 연속 숫자음에 대한 음성인식은 고립 숫자음 인식과는 달리 충분한 학습데이터만으로는 만족할 만한 결과를 가져오지 못한다. 이 논문에서는 연속 숫자음 음성인식에 잇어서 비슷하게 발음되는 숫자음과 같은 숫자에 대해 다양하게 발음되는 숫자음에 대해 HMM의 한계를 제시하고 그 해결채으로 Discriminant 학습의 적용방법을 제시한다. 연속 숫자음의 인식 시스템을 구현하는 데 있어서 인식률 낮은 부분에 Discriminant 학습을 적용하여 인식률을 대폭 향상시킨 실험결과를 제시한다.

  • PDF

Merging Context Information and Recognition Result for Robust Speech Recognition in Noisy Environments (잡음 환경에서의 강인한 음성인식을 위한 문맥 정보와 음성인식 결과의 융합)

  • Song, Won-Moon;Kim, Eun-Ju;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.733-735
    • /
    • 2005
  • 최근 음성인식 분야 에서는 잡음 환경에서 좀 더 신뢰도 높은 음성 인식 결과물 얻기 위하여 인식 결과 도출 단계에서 여러 가지 정보를 융합 하는 방법이나 인식결과를 후처리 하여 새로운 결과를 얻어 내는 방법들이 연구 되고 있다. 본 논문에서는 개인 모바일 기기에서의 음성 인식 환경에서 사용자의 발화 패턴 정보를 가지는 문맥 정보를 활용함으로서 잡음 환경에서의 음성 정보 손실에 따른 인식률 하락을 보완하는 방법을 제안한다. 먼저 사용자의 기기 사용 로그나 발화 로그 정보로부터 특정 명령어들의 순차적 발화 패턴을 마이닝하여 문맥 정보를 구성한다. 이 후 음성 발화시에 인식기의 최종 인식 결과에 대한 신뢰도가 떨어진다고 판단될 때 앞서 얻어진 문맥 정보의 신뢰도를 인식기의 각 후보단어들의 인식률과 융합하여 새로운 인식 결과를 도출해 낸다. 이러한 과정에서 인식기 결과에 대한 신뢰성을 판단하는 기준을 실험을 통하여 결정 하였으며 신뢰성이 기준 이하일 경우의 융합 과정을 위하여 후보 단어 인식률과 문맥정보를 적절히 융합할 수 있는 방법을 제안한다.

  • PDF

Blmodal Speech Recognition Using Contextual Feature (문맥정보를 이용한 이중모드 음성인식)

  • 류정우;김은주;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.631-633
    • /
    • 2004
  • 최근 잡음환경에서 신뢰도 높은 음성인식을 위해 음성정보와 영상정보를 융합하는 이중모드 음성인식 방법이 활발히 연구되고 일다. 본 논문에서는 보다 음성 인식률을 향상시키기 위해 사용자가 말한 단어들의 순차 패턴을 나타내는 문맥정보를 이용한 후처리 방법을 제안한다. 이러한 문맥정보를 인식하기 위해 다층퍼셉트론 구조를 갖는 문맥정보 인식기를 제안한다 이중모드 음성인식기와 문맥정보 인식기 결과를 효율적으로 결합하기 위한 후처리 방법으로 순차 결합방법을 제안한다. 문맥정보를 이용한 이중모드 음성인식이 잡음 환경에서 90%이상의 인식률을 보였다 본 논문은 잡음환경에서 강인한 음성인식을 위해 문맥정보와 같은 사용자 행동패턴이 새로운 정보로 이용될 수 있다는 가능성을 제시한다.

  • PDF

Syllabic Speech Rate Control for Improving Elderly Speech Recognition of Smart Devices (음절 별 발화속도 조절을 통한 노인 음석인식 개선)

  • Kyeong, Ju Won;Son, Gui Young;Kwon, Soonil
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1711-1714
    • /
    • 2015
  • 스마트 디바이스가 사회와 소통할 수 있는 도구가 되었음에도 불구하고 아직까지 노인들이 사용하기에는 어려움이 있다. 여기에 음성인식 기술을 이용한 음성인터페이스를 활용함으로써 노인들의 스마트 디바이스에 대한 사용성을 높일 수 있다. 하지만 일반적인 음성인식 시스템은 청장년의 발성 스타일에 맞춰져 있기 때문에, 노화된 노인의 발성이 그대로 입력될 경우 음성인식률이 하락한다. 본 연구에서는 노인의 음절 별 발화속도가 일반적인 음성인식 시스템의 성능을 보증할 수 있는 범위를 벗어나는 경우가 많다는 분석 결과를 토대로 노인의 음절 별 발화속도를 조정한 결과 노인남녀 평균 음성인식률이 15.3% 상승하였다. 이처럼 노인의 음성인식 오류 원인들 중 하나인 발화속도의 재조정으로 음성 인식률을 높일 수 있는 토대를 마련하였다. 이는 노인들이 스마트 디바이스를 이용하여 쉽고 정확한 작업을 수행할 수 있게 됨으로써, 노인들의 사회 참여와 정보 획득이 용이해 지고 더 나아가 세대 간의 소통에도 이바지할 것으로 기대한다.

음성인식률 향상을 위한 잡음 제거

  • 황동환
    • 전기의세계
    • /
    • v.51 no.12
    • /
    • pp.22-25
    • /
    • 2002
  • 많은 연구를 통해 음성 인식은 잡음이 존재하지 않는 환경에서는 매우 높은 인식률을 보이고 있으며 실제로 여러 분야에서 응용되고 있다 하지만 여러 잡음이 존재하는 환경에서는 그 성능이 급격하게 저하되어 잡음 에 둔감한 인식기와 잡음 제거가 필수적이다. 본 내용에서는 독립 요소 기법에 기반 한 잡음 제거 기법을 소개하고 이를 칩으로 구현하고 그 결과를 고찰해 보겠다.

  • PDF

Digit Recognition using Speech and Image Information (음성과 영상 정보를 이용한 우리말 숫자음 인식)

  • 이종혁;최재원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.83-88
    • /
    • 2002
  • In the majority of case, speech recognition method tried recognition using only speech information In order to highten the recognition rate, we proposed recognition system that recognige digit using speech and image information. Through an experiment, this paper compared the recognition rate performed by existent speech recognition method and speech recognition method that includes image information. When we added the image information to the speech information, the speech recognition rate was increased about 6%. This paper shows that adding image information to speech information is more effective than using only speech information In digit recognition.

Recognition of Corrupted Speech by Noise using Wavelet Packets (웨이블릿 페킷을 이용한 잡음에 손상된 음성신호 인식에 관한 연구)

  • Koh Kwang-hyun;Chang Sungwook;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.89-92
    • /
    • 1999
  • 인식기 훈련과정에서 발생하지 않았던 잡음이 인식과정에서 신호를 손상할 경우 인식률의 저하가 발생한다. 본 논문에서는 음성의 질을 떨어뜨리는 이러한 잡음을 Wavelet Packets을 이용하여 전처리함으로서 인식률을 향상시키는 방법을 제안한다. 인식기로는 Hidden Markov Model을 사용하였고, 시스템에 사용된 특징 파라미터로는 15차 Cepstrum을 사용하였다. 11 kHz로 샘플링된 숫자음에 Additive White Gaussian Noise를 첨가한 손상된 음성신호를 인식실험에 사용하였다. 화자독립으로 진행된 실험에서 잡음에 의해 손상된 SNR 20dB의 음성신호에 대하여 Wavelet Packets로 잡음을 제거한 후 복원된 음성신호 의 인식률은 약 $10\%$ 향상됨을 확인하였다.

  • PDF

Telephone Speech Recognition Using Laboratory Environment Speech Data (실험실 환경 음성을 이용한 전화음성 인식에 관한 연구)

  • 윤상호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.391-394
    • /
    • 1994
  • 본 연구에서는 전화선을 통한 음성인식을 위해 저잡음의 실험실 환경에서 수집된 음성 자료를 이용하는 접근을 하였다. 전화 음성과 실험실 음성 간의 특성 차이를 보정하기 위해 선형 회귀 분석법을 이용한 SDCN을 제안하였다. 두 자료간의 보정은 동시 녹음된 실험실 환경의 음성과 전화음성의 SNRDP 따른 두 자료간의 차이를 최소화하는 변환행렬을 구해, 이를 학습자료의 변환에 이용한다. 제안된 방법의 타당성을 확인하기 위해 두가지 인식 알고리즘인 DTW와 이산 HMM 에 대해 실험하였다. DTW를 통한 인식에서개선된 SDCN 에 의한 특징벡터의 변환은 기존의 SDCNDP 따른 특징변환보다 8~17%의 인식률이 향상되었다. 이산 HMM으로 인식할 때는 개선된 SDCNDP 의한 전화음성과 실험실 음성과의 유사도를 보다 잘 나타내기 위해 개선된 SDCN을 적용하고, VQ 코드열 상에서이 코드 사상법을 사용하여 인식률의 향상시켰다.

  • PDF

The Study of Korean Speech Recognition for Various Continue HMM (연속 HMM에 따른 우리말 음성인식 조사)

  • Lim Changwug;Shin Chwacheul;Kim Sukdong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.49-52
    • /
    • 2004
  • 본 논문은 연속 밀도 함수를 갖는 HMM별 한국어 연속 음성 인식에 관한 연구이다. 여기서 우리는 밀도 함수가 2개에서 44개까지 갖는 연속 HMM모델에서 가장 효율적인 연속 음성 인식을 위한 방법을 제시한다. 음성 모델은 36개로 구성한 기본음소를 사용한 CI-Model과 3,000개로 구성한 확장음소를 사용한 CD-Model을 사용하였고, 언어 모델은 N-gram을 이용하여 처리하였다. 이 방법을 사용하여 500개의 문장과 6,486 개의 단어에 대하여 화자 독립으로 CI Model에서 최고 $94.4\%$의 단어 인식률과 $64.6\%$의 문장 인식률을 얻었고, CD Model에서는 $98.2\%$의 단어 인식률과 $73.6\%$의 문장인식률을 안정적으로 얻었다.

  • PDF