• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.023 seconds

A study on compensation of incorrect recognition on HMM using multilayer perceptrons (신경망을 이용한 HMM의 오인식 보상에 관한 연구)

  • Pyo Chang Soo;Kim Chang Keun;Hur Kang In
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.27-30
    • /
    • 2000
  • 본 논문은 HMM(Hidden Markov Model)을 이용하여 인식을 수행할 경우의 오류를 최소화 할 수 있는 후 처리 과정으로 신경망을 결합시켜 HMM 단독으로 사용하였을 때 보다 높은 인식률을 얻을 수 있는 HMM과 신경망의 하이브리드시스템을 제안한다. HMM을 이용하여 학습한 후 학습에 참여하지 않은 데이터를 인식하였을 때 오인식 데이터를 정인식으로 인식하도록 HMM의 출력으로 얻은 각 출력확률을 후 처리에 사용될 MLP(Multilayer Perceptrons)의 학습용으로 사용하여 MLP를 학습하여 HMM과 MLP을 결합한 하이브리드 모델을 만든다. 이와 같은 HMM과 신경망을 결합한 하이브리드 모델을 사용하여 단독 숫자음과 4연 숫자음 데이터에서 실험한 결과 HMM 단독으로 사용하였을 때 보다 각각 약 $4.5\%$, $1.3\%$의 인식률 향상이 있었다. 기존의 하이브리드 시스템이 갖는 많은 학습시간이 소요되는 문제점과 실시간 음성인식시스템을 구현할 때의 학습데이터의 부족으로 인한 인식률 저하를 해결할 수 있는 방법임을 확인할 수 있었다.

  • PDF

A study on performance improvement of neural network using output probability of HMM (HMM의 출력확률을 이용한 신경회로망의 성능향상에 관한 연구)

  • 표창수;김창근;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.157-160
    • /
    • 2000
  • 본 논문은 HMM(Hidden Markov Model)을 이용하여 인식을 수행할 경우의 오류를 최소화 할 수 있는 후처리 과정으로 신경망을 결합시켜 HMM 단독으로 사용하였을 때 보다 높은 인식률을 얻을 수 있는 HMM과 신경망의 하이브리드시스템을 제안한다. HMM을 이용하여 학습한 후 학습에 참여하지 않은 데이터를 인식하였을 때 오인식 데이터를 정인식으로 인식하도록 HMM의 출력으로 얻은 각 출력확률을 후처리에 사용될 MLP(Multilayer Perceptrons)의 학습용으로 사용하여 MLP를 학습하여 HMM과 MLP을 결합한 하이브리드 모델을 만든다. 이와 같은 HMM과 신경망을 결합한 하이브리드 모델을 사용하여 단독 숫자음과 4연 숫자음 데이터에서 실험한 결과 HMM 단독으로 사용하였을 때 보다 각각 약 4.5%, 1.3%의 인식률 향상이 있었다. 기존의 하이브리드 시스템이 갖는 많은 학습시간이 소요되는 문제점과 실시간 음성인식시스템을 구현할 때의 학습데이터의 부족으로 인한 인식률 저하를 해결할 수 있는 방법임을 확인할 수 있었다.

  • PDF

Speech Recognition of the Korean Vowel 'ㅗ' Based on Time Domain Waveform Patterns (시간 영역 파형 패턴에 기반한 한국어 모음 'ㅗ'의 음성 인식)

  • Lee, Jae Won
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.583-590
    • /
    • 2016
  • Recently, the rapidly increasing interest in IoT in almost all areas of casual human life has led to wide acceptance of speech recognition as a means of HCI. Simultaneously, the demand for speech recognition systems for mobile environments is increasing rapidly. The server-based speech recognition systems are typically fast and show high recognition rates; however, an internet connection is necessary, and complicated server computation is required since a voice is recognized by units of words that are stored in server databases. In this paper, we present a novel method for recognizing the Korean vowel 'ㅗ', as a part of a phoneme based Korean speech recognition system. The proposed method involves analyses of waveform patterns in the time domain instead of the frequency domain, with consequent reduction in computational cost. Elementary algorithms for detecting typical waveform patterns of 'ㅗ' are presented and combined to make final decisions. The experimental results show that the proposed method can achieve 89.9% recognition accuracy.

A Study on a Model Parameter Compensation Method for Noise-Robust Speech Recognition (잡음환경에서의 음성인식을 위한 모델 파라미터 변환 방식에 관한 연구)

  • Chang, Yuk-Hyeun;Chung, Yong-Joo;Park, Sung-Hyun;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.112-121
    • /
    • 1997
  • In this paper, we study a model parameter compensation method for noise-robust speech recognition. We study model parameter compensation on a sentence by sentence and no other informations are used. Parallel model combination(PMC), well known as a model parameter compensation algorithm, is implemented and used for a reference of performance comparision. We also propose a modified PMC method which tunes model parameter with an association factor that controls average variability of gaussian mixtures and variability of single gaussian mixture per state for more robust modeling. We obtain a re-estimation solution of environmental variables based on the expectation-maximization(EM) algorithm in the cepstral domain. To evaluate the performance of the model compensation methods, we perform experiments on speaker-independent isolated word recognition. Noise sources used are white gaussian and driving car noise. To get corrupted speech we added noise to clean speech at various signal-to-noise ratio(SNR). We use noise mean and variance modeled by 3 frame noise data. Experimental result of the VTS approach is superior to other methods. The scheme of the zero order VTS approach is similar to the modified PMC method in adapting mean vector only. But, the recognition rate of the Zero order VTS approach is higher than PMC and modified PMC method based on log-normal approximation.

  • PDF

Research on Recognition Network Structures for Non-recognition Sentence Rejection (비인식 대상 문장 거부 기능을 위한 음소 기반 인식 네트워크의 구성에 관한 연구)

  • 이병혁;하진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.772-774
    • /
    • 2004
  • 음성인식 시스템에서 입력된 음성 데이터에 대해 비인식 대상에 대한 거부기능은 신뢰도 보장 측면에서 상당히 중요하다. 비인식 대상의 단어 거부는 지금까지 여러 연구가 이루어져 왔으나, 문장 거부에 대한 연구는 사실상 부족한 실정이다. 본 논문에서는 비인식 대상 문장 거부기능의 신뢰도를 한층 높일 수 있도록 음소 기반 네트워크에 유성자음(VC), 무성자음(C), 모음(V) 단위의 필러 음향 모델을 생성하여 다양한 음소기반 인식 네트워크의 구성방법을 적용하여 비인식 대상 문장에 대해 거부 기능을 구현하고, 그에 따라 인식률과 거부율이 달라질 수 있음을 보인다. 구현된 시스템에서 제안한 3가지 음소단위 인식 네트워크 중 문장의 각 단어별 필러 모델을 구성했을 때가 가장 좋은 구성임을 알 수 있었다.

  • PDF

Performance Comparison and Verification of Lip Parameter Selection Methods in the Bimodal Speech ]Recognition System (입술 파라미터 선정에 따른 바이모달 음성인식 성능 비교 및 검증)

  • 박병구;김진영;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.68-72
    • /
    • 1999
  • The choice of parameters from various lip information and the robustness of extracting lip parameters play important roles in the performance of bimodal speech recognition system. In this paper, lip parameters are extracted by using an automatic extraction algorithm and inner lip parameters effect on the recognition rate more than outer lip parameters. Compared with a manual extraction algorithm, the automatic extraction method is evaluated about its robustness.

  • PDF

Real-time implementation of speaker dependent speech recognition hardware module using the TMS320C32 DSP (TMS320C32 DSP를 이용한 실시간 화자종속 음성인식 하드뒈어 모듈 구현)

  • Chung, Hoon;Chung, Ik-joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.14-22
    • /
    • 1998
  • 본 연구에서는 Texas instruments 사의 저가형 부동소수점 디지털 신호 처리기인 TMS320C32를 이용하여 실시간 화자종속 음성인식 하드웨어 모듈을 개발하였다. 하드웨어 모듈의구성은 40MHz 의 TMS320C32, 14bit 코덱인 TLC32044, EPROM 과 SRAM 등의 메모리와 호스트 인터페이스를 위한 로직회로로 이루어져 있다. 뿐만 아니라 이 하드웨어 모듈을 PC 상에서 평가해보기 위한 PC 인터페이스용 보드 및 소프트웨어도 개발하였다. 음성인식 알고리즘은 C 및 어셈블리를 이용한 최적화를 통하여 계산속도를 대폭 개선하였다. 현재 인식률은 일반 사무실 환경에서 30단어에 대하여 95% 이상으로 매우 높은 편이며, 특히 배경음악이나 자동차 소음과 같은 잡음환경에서도 잘 동작한다.

  • PDF

Method for Spectral Enhancement by Binary Mask for Speech Recognition Enhancement Under Noise Environment (잡음환경에서 음성인식 성능향상을 위한 바이너리 마스크를 이용한 스펙트럼 향상 방법)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.468-474
    • /
    • 2010
  • The major factor that disturbs practical use of speech recognition is distortion by the ambient and channel noises. Generally, the ambient noise drops the performance and restricts places to use. DSR (Distributed Speech Recognition) based speech recognition also has this problem. Various noise cancelling algorithms are applied to solve this problem, but loss of spectrum and remaining noise by incorrect noise estimation at low SNR environments cause drop of recognition rate. This paper proposes methods for speech enhancement. This method uses MMSE-STSA for noise cancelling and ideal binary mask to compensate damaged spectrum. According to experiments at noisy environment (SNR 15 dB ~ 0 dB), the proposed methods showed better spectral results and recognition performance.

A Performance of a Remote Speech Input Unit in Speech Recognition System (음성인식 시스템에서의 원격 음성입력기의 성능평가)

  • Lee, Gwang-seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.723-726
    • /
    • 2009
  • In this research, We simulated performances of error reduction algorithm for the speech signal based on the microphone array-based beamforming method in speech recognition system and analyzed its performance. Also, we processed speech signal adopted from microphone array and maximum signal to noise ratio for each channel, and then compared them with signal to noise ratio of speech signal. Speech recognition rate is improved from 54.2% to 61.4% in case 1 and is improved from 41.2% to 50.5% in case 2 of the lower signal to noise ratio. Therefore the average reduction rates are showed 15.7% in case 1.

  • PDF

Lip Reading Method Using CNN for Utterance Period Detection (발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법)

  • Kim, Yong-Ki;Lim, Jong Gwan;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.233-243
    • /
    • 2016
  • Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.