• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.022 seconds

Language Models Using Iterative Learning Method for the Improvement of Performance of CSR System (연속음성인식 시스템의 성능 향상을 위한 반복학습법을 이용한 언어모델)

  • Oh Se-Jin;Hwang Cheol-Jun;Kim Bum-Koog;Jung Ho-Ynul;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.82-85
    • /
    • 1999
  • 본 연구에서는 연속음성인식 시스템의 성능 향상을 위하여 음성의 채록환경 및 데이터량 등을 고려한 효과적인 언어모델 작성방법을 제안하고, 이를 항공편 예약시스템에 적용하여 성능 평가 실험을 실시한 결과 $91.6\%$의 인식률을 얻어 제안한 방법의 유효성을 확인하였다. 이를 위하여 소량의 200문장의 항공편 예약 텍스트 데이터를 이용하여 좀더 강건한 단어발생 확률을 가지도록 하기 위해 일반적으로 대어휘 연속음성인식에서 많이 이용되고 있는 단어 N-gram 언어모델을 도입하고 이를 다양한 발성환경을 고려하여 1,154문장으로 확장한 후 동일 문장'을 반복 학습하여 언어모델을 작성하였다. 인식에 있어서는 오인식과 문법적 오류를 최소화하기 위하여 forward - backward pass 방법의 stack decoding알고리즘을 이용하였다. 인식실험 결과, 평가용 3인의 200문장을 각 반복학습 회수에 따라 학습한 각 언어모델에 대해 평가한 결과, forward pass의 경우 평균 $84.1\%$, backward pass의 경우 평균 $91.6\%$의 문장 인식률을 얻었다. 또한, 반복학습 회수가 증가함에 따라 backward pass의 인시률의 변화는 없었으나, forward pass의 경우, 인식률이 반복회수에 따라 증가하다가 일정값에 수렴함을 알 수 있었고, 언어모델의 복잡도에서도 반복회수가 증가함에 따라 서서히 줄어들며 수렴함을 알 수 있었다. 이상의 결과로부터 소량의 텍스트 데이터를 이용한 제한된 태스크에서 언어모델을 작성할 때 반복학습 방법이 유효함을 확인할 수 있다.

  • PDF

An Implementation of Multimedia Game using Speech Recognition for Windows (Windows환경에서 음성인식을 이용한 멀티미디어 게임의 구현)

  • 윤재선
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.335-338
    • /
    • 1998
  • 본 논문에서는 음성인식 알고리즘인 HMM을 사용하여 Windows 환경에서 온라인으로 사용할 수 있는 음성인식 게임“Voice Illust Magic”개발에 관하여 소개한다. 사용자와 컴퓨터가 상호작용(Interaction)할 수 있는 매체를 마우스와 키보드뿐만 아니라 게임에 필요한 명령어를 음성인식으로 실행함으로써 정보전달이 매우 효과적으로 이루어져 사용자가 접근하기 쉽고 편리하게 되었으며 의사전달 효율을 높일 수 있었다. 음성인식 과정을 온라인으로 마이크를 통해 들어온 음성을 자동으로 끝점을 검출한 후, Mel-Cepstrum을 추출하여 Word 단위의 reference HMM과 비교하여 최적의 model이 선택되면, 윈도우즈에게 메시지를 보내어 마우스나 키보드가 동작하는 것과 마찬가지로 실행되도록 하였다. 또한, 입력 음성을 모든 reference pattern과 비교하는 것이 아니라 그 상황에 적용될 수 있는 표준 패턴을 한정함으로써 탐색시간을 줄일 수 있었으며 높은 인식률을 나타내었다.

  • PDF

Performance Evaluation of Acoustic Models According to Differences between Vocabularies in Training and Test Phases of Speech Recognition (음성 인식에서 훈련 및 인식 과정에 사용되는 대상 어휘의 차이에 대한 음향 모델의 성능 평가)

  • 김회린;이항섭;권오욱
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.7
    • /
    • pp.22-27
    • /
    • 1998
  • 본 논문에서는 ETRI에서 개발한 가변 어휘 음성 인식기의 어휘 독립 음향 모델링 방법을 기술하고, 이 모델의 어휘 종속, 어휘 독립 및 어휘적응 성능을 평가하기 위하여 다 양한 고립단어 및 연속음성 DB에 대하여 실험한 결과를 분석하였다. 평가를 위하여 사용한 음성 DB로는 고립단어 음성으로 POW(Phonetically Optimized Words) 3848, PBW(Phonetically Balanced Words) 445, PBW 452, 호텔예약 244 단어, 게임 제어용 단어 등이며, 연속음성으로 일반 문장 음성 및 연속 숫자음을 이용하였다. 성능 분석 결과 40개 음소 모델만으로도 비교적 높은 인식률을 보여 주었지만, 어휘독립의 경우는 어휘종속에 비 하여 성능이 크게 낮았고, 특히 대상 어휘가 숫자음, 알파벳, 연속음 등의 경우에는 POW 데이터나 PBW 데이터만 가지고는 우수한 가변 어휘 음성 인식기를 구현하기에 한계가 있 음을 알 수 있다. 또한, 훈련 데이터의 어휘와 평가데이터의 어휘가 비슷할 경우에는 변이음 모델을 사용하면 음소 모델만을 사용할 경우에 비하여 그 성능이 우수하였지만, 일반적인 어휘독립의 상황에서는 효과가 별로 없음을 알 수 있었다.

  • PDF

Performance Evaluation of HM-Net Speech Recognition System using Korea Large Vocabulary Speech DB (한국어 대어휘 음성DB를 이용한 HM-Net 음성인식 시스템의 성능평가)

  • 오세진;김광동;노덕규;송민규;김범국;황철준;정현열
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2443-2446
    • /
    • 2003
  • 본 논문에서는 한국전자통신연구원에서 제공된 대어휘 음성DB를 이용하여 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다 HM-Net은 PDT-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행한다. 이러한 상태분할을 수행하여 파라미터를 공유하게 되며 최적인 모델 네트워크를 작성하게 된다. 대어휘 음성데이터를 이용하여 음향모델을 작성하고 인식실험을 수행한 결과, 100명의 100단어와 60문장에 대해 평균 97.5%, 96.7%의 인식률을 보였다.

  • PDF

An Experimental Field Trial of Stock Information Retrieval System Based on Speech Recognition (음성인식기술을 이용한 증권정보 안내 시스템의 실험적 실용시험)

  • 도삼주
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.241-244
    • /
    • 1994
  • 이 논문은 대어휘, 화자독립 음성인식 시스템인 KT-STOCK과 이 시스템에 대한 전화망을 통한 실험적 실용시험에 대해 기술하였다. KT-STOCK은 현재 주식시장에 상장된 712개 회사의 현재주가를 음성을 이용하여 검색할 수 있는 시스템이다. 이 시스템은 hidden markov model 기술에 기반을 둔 고립단어 인식 시스템이며 유사음소를 기본 인식단위로 사용한다. KT-STOCK은 1994년 6월 24일부터 실험적 실용시험 중에 있다. 중간 결과에 따르면 모의 실험 결과는 실제 환경에서의 시험과 차이가 있는 거승로 나타났다. 실제 환경에서 이 시스템의 인식률은 현재 61.9%이다.

  • PDF

A Study on Speech Recognition based on Phoneme for Korean Subway Station Names (한국의 지하철역명을 위한 음소 기반의 음성인식에 관한 연구)

  • Kim, Beom-Seung;Kim, Soon-Hyob
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.228-233
    • /
    • 2011
  • This paper presented the method about the Implementation of Speech Recognition based on phoneme considering the phonological characteristic for Korean Subway Station Names. The Pronunciation dictionary considering PLU set and phonological variations with four Case in order to select the optimum PLU used for Speech Recognition based on phoneme for Korean Subway Station Names was comprised and the recognition rate was estimated. In the case of the applied PLU, we could know the optimum recognition rate(97.74%) be shown in the triphone model in case of considering the recognition unit division of the initial consonant and final consonant and phonological variations.

Performance Comparison of Filler Models and Word Spotting Ratio for Sentence Rejection in Phoneme-based Recognition Networks (문장 거부를 위한 음소기반 인식 네트워크에서의 필러 모델 비율과 단어 검출률의 성능비교)

  • Kim Hyung-Tai;Lee Byung-Hyuk;Ha Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.856-858
    • /
    • 2005
  • 음성인식 시스템에서 입력된 음성 데이터에 대해 비인식 대상을 거부하는 기능은 신뢰도 보장 측면에 있어서 상당히 중요하며, 신뢰도를 높이기 위해서는 단순한 인식기능 외에 부적절한 입력 패턴의 거부 기능이 필요하다. 본 논문에서는 이러한 신뢰성 문제를 해결하기 위하여 음소기반 인식 네트워크에서 필러 모델 방법과 단어 검출률 방법을 사용하여 실험하였고, 문장의 단어 수에 따른 두 방법의 문장 거부 성능을 FAR과 FRR의 평균을 최소화 하는 값을 각각 구함으로써 비교${\cdot}$분석 하였다. 그 결과 필러모델 방법이 좀 더 나은 거부 성능을 보였고, 단어 검출률을 이용하는 방법이 인식 네트워크를 전부 거치지 않아도 되므로 실행속도와 메모리 절약에서 효과적이었다.

  • PDF

Korean Word Recognition Using Diphone- Level Hidden Markov Model (Diphone 단위 의 hidden Markov model을 이용한 한국어 단어 인식)

  • Park, Hyun-Sang;Un, Chong-Kwan;Park, Yong-Kyu;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.14-23
    • /
    • 1994
  • In this paper, speech units appropriate for recognition of Korean language have been studied. For better speech recognition, co-articulatory effects within an utterance should be considered in the selection of a recognition unit. One way to model such effects is to use larger units of speech. It has been found that diphone is a good recognition unit because it can model transitional legions explicitly. When diphone is used, stationary phoneme models may be inserted between diphones. Computer simulation for isolated word recognition was done with 7 word database spoken by seven male speakers. Best performance was obtained when transition regions between phonemes were modeled by two-state HMM's and stationary phoneme regions by one-state HMM's excluding /b/, /d/, and /g/. By merging rarely occurring diphone units, the recognition rate was increased from $93.98\%$ to $96.29\%$. In addition, a local interpolation technique was used to smooth a poorly-modeled HMM with a well-trained HMM. With this technique we could get the recognition rate of $97.22\%$ after merging some diphone units.

  • PDF

A Study on Speech Recognition inside the Car (차량내에서의 음성인식에 관한 연구)

  • Park Jeong-Hoon;Im Hyung-Kyu;Kim Chong-Kyo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.56-60
    • /
    • 1999
  • 본 논문은, 자동차에서 발생할 수 있는 다양한 형태의 잡음이 섞인 음성을 대상으로, 잡음에 강인한 파라미터들을 사용하여 인식기들을 구축하였으며, 이들 파라미터를 비교 평가하였다. 실험에 사용된 음성 데이터는 차종, 속도, 도로 환경, 라디오 ON/OFF, 창문 개폐여부 등 다양한 잡음 환경에서 수집하였다. 실험에서 비교된 파라미터는 MFCC(Mel-Blrequency Cepstral Coefficient)와 PLP(Perceptually Linear Prediction) 이며, 각각의 파라미터에 대해서 MKM(Modified k-mean)을 이용하여 코드북을 작성하였고, DHMM(Discrete Hidden Markov Model)을 인식알고리즘으로 사용하였다. 실험 결과로서, 아스팔트 도로에서 창문을 닫고, 라디오를 켜지 않은 상태에서 60km/h로 주행시 $96.25\%$로 가장 높은 인식률을 얻었고, 고속도로에서 창문을 열고 100km/h로 주행시에는$60\%$로 가장 낮은 인식률을 얻었다.

  • PDF

A Study on Word Selection Method and Device Improvement for Improving Speech Recognition Rate of Speech-Language-impaired in Severe Noise Environment (심한 소음환경에서 언어장애인 음성 인식률 향상을 위한 단어선정 방법 및 장치 개선에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.555-567
    • /
    • 2019
  • Speech recognition rate is lowered even in a noisy environment, and it is difficult for a person with a speech disability or an inconvenient language to use it in a social life. In addition to improving the inconvenience of using the language, 280 words were selected using the word selection method which was improved when the word was selected considering the pronunciation characteristics of the language impaired. The MEMS development device used in the experiment was made considering material, lead wire type, length and direction. We improved the speech recognition rate by using the developed word selection method and the MEMS device developed to improve the speech recognition rate due to incorrect pronunciation and severe noise. The new method of selecting words and the mems device were improved and the results were included.