• 제목/요약/키워드: 음성/음악 판별

검색결과 13건 처리시간 0.023초

FM 라디오 환경에서의 실시간 음악 판별 시스템 구현 (Implementation of Music Signals Discrimination System for FM Broadcasting)

  • 강현우
    • 정보처리학회논문지B
    • /
    • 제16B권2호
    • /
    • pp.151-156
    • /
    • 2009
  • 본 연구에서는 GMM 기반의 음성/음악 판별 방법을 응용하여 FM 라디오 방송에서 순수한 음악 구간만을 판별하는 시스템을 구현하였다. 본 시스템에서는 음성, 음악, 광고 음악, 기타 여러 가지 사운드가 혼합되어 있는 오디오 방송 프로그램에서 순수한 음악만을 판별하여 자동으로 저장하고자 한다. 음악의 시작 부분과 끝 부분을 보다 정교하게 검출하고자 순수한 음악으로 판별된 구간의 시작 부분과 끝 부분에 대해 후처리 과정을 추가하였다. PC 환경에서 FM 라디오 방송을 이용하여 구현된 시스템을 실시간으로 테스트한 결과 우수한 성능을 보임을 확인하였다. 또한 SoC 구현을 고려하여 고정소수점 연산을 수행한 결과 3MIPS 이하의 적은 연산량으로 부동소수점 연산일 때와 동일한 결과를 얻을수 있었다.

FM 방송 중 블록 단위 음성 음악 판별 시스템의 설계 및 구현 (Design and Implementation of Speech Music Discrimination System per Block Unit on FM Radio Broadcast)

  • 장현종;엄정권;임준식
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.25-28
    • /
    • 2007
  • 본 논문은 FM 라디오 방송의 오디오 신호를 블록 단위로 음성 음악을 판별하는 시스템을 제안하는 논문이다. 본 논문에서는 음성 음악 판별 시스템을 구축하기 위해 다양한 특정 파라미터와 분류 알고리즘을 제안 한다. 특정 파라미터는 신호처리 분야(Centroid, Rolloff, Flux, ZCR, Low Energy), 음성 인식 분야(LPC, MFCC), 음악 분석 분야(MPitch, Beat)에서 각각 사용되는 파라미터를 사용하였으며 분류 알고리즘으로는 패턴인식 분야(GMM, KNN, BP)와 퍼지 신경망(ANFIS)을 사용하였고, 거리 구현은 Mahalanobis 거리를 사용하였다.

  • PDF

스마트 스피커에서의 음악 재생 발화 오류 교정 (Utterance Error Correction of Playing Music on Smart Speaker)

  • 이다니엘;고병일;김응균
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.482-486
    • /
    • 2018
  • 본 논문에서는 스마트 스피커 환경에서 음악 재생 발화의 오류를 교정하는 음악 재생 발화 교정 모델을 제안한다. 음악 재생 발화에서 발생하는 다양한 오류 유형을 살펴보고, 음악 재생 발화 교정 모델에 대해 소개한다. 해당 모델은 후보 생성 모델과 교정 판별 모델로 이루어져 있다. 후보 생성 모델은 정답 후보들을 생성하고, 교정 판별 모델은 Random Forest를 사용하여 교정 여부를 판별한다. 제안하는 방법으로 음악 재생 발화에서 실제 사용자 만족도를 높일 수 있었다.

  • PDF

SVM 기반 음성/음악 분류기의 효율적인 임베디드 시스템 구현 (Efficient Implementation of SVM-Based Speech/Music Classification on Embedded Systems)

  • 임정수;장준혁
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.461-467
    • /
    • 2011
  • 제한된 대역폭을 효율적으로 사용하기 위해서 도입된 가변 전송률은 먼저 신호의 정확한 분류를 필요로 한다. 특히 멀티미디어 서비스가 보편화 되면서 음성/음악 신호 분류의 중요성도 높아지게 되었다. 음성/음악 분류기 중, 서포트벡터머신 (SVM)을 이용한 분류기는 높은 분류 정확도로 주목받고 있다. 그러나 SVM는 많은 계산량과 저장 공간을 요구하므로 효율적인 구현이 요구되며, 특히 임베디드 시스템과 같이 자원이 제한 적인 경우에는 더욱 그러하다. 본 논문에서는 먼저 SVM을 이용한 음성/음악 분류기의 임베디드 시스템으로의 구현을 실행시간과 에너지소비의 관점에서 분석하고, 효율적인 구현을 위한 두가지 방법들을 제안한다. 서포트벡터의 판별결과에의 기여도를 바탕으로 기여도가 낮은 벡터들을 제외하는 방법과, 음성/음악 신호에 기본적으로 존재하는 각 프레임간의 상관관계를 이용하여 입력신호의 일부를 건너뛰는 방법이다. 이 기법들은 SVM의 학습 시 사용되는 다른 최적화 기법에 관계없이 적용이 가능하며, 실험을 통해 분류의 정확도, 실행시간, 그리고 에너지소비의 관점에서 그 성능을 증명하였다.

음성/음악 판별을 위한 특징 파라미터와 분류기의 성능비교 (Performance Comparison of Feature Parameters and Classifiers for Speech/Music Discrimination)

  • 김형순;김수미
    • 대한음성학회지:말소리
    • /
    • 제46호
    • /
    • pp.37-50
    • /
    • 2003
  • In this paper, we evaluate and compare the performance of speech/music discrimination based on various feature parameters and classifiers. As for feature parameters, we consider High Zero Crossing Rate Ratio (HZCRR), Low Short Time Energy Ratio (LSTER), Spectral Flux (SF), Line Spectral Pair (LSP) distance, entropy and dynamism. We also examine three classifiers: k Nearest Neighbor (k-NN), Gaussian Mixure Model (GMM), and Hidden Markov Model (HMM). According to our experiments, LSP distance and phoneme-recognizer-based feature set (entropy and dunamism) show good performance, while performance differences due to different classifiers are not significant. When all the six feature parameters are employed, average speech/music discrimination accuracy up to 96.6% is achieved.

  • PDF

MFCC의 단구간 시간 평균을 이용한 음성/음악 판별 파라미터 성능 향상 (Improving Speech/Music Discrimination Parameter Using Time-Averaged MFCC)

  • 최무열;김형순
    • 대한음성학회지:말소리
    • /
    • 제64호
    • /
    • pp.155-169
    • /
    • 2007
  • Discrimination between speech and music is important in many multimedia applications. In our previous work, focusing on the spectral change characteristics of speech and music, we presented a method using the mean of minimum cepstral distances (MMCD), and it showed a very high discrimination performance. In this paper, to further improve the performance, we propose to employ time-averaged MFCC in computing the MMCD. Our experimental results show that the proposed method enhances the discrimination between speech and music. Moreover, the proposed method overcomes the weakness of the conventional MMCD method whose performance is relatively sensitive to the choice of the frame interval to compute the MMCD.

  • PDF

멜 켑스트럼 모듈레이션 에너지를 이용한 음성/음악 판별 (Speech/Music Discrimination Using Mel-Cepstrum Modulation Energy)

  • 김봉완;최대림;이용주
    • 대한음성학회지:말소리
    • /
    • 제64호
    • /
    • pp.89-103
    • /
    • 2007
  • In this paper, we introduce mel-cepstrum modulation energy (MCME) for a feature to discriminate speech and music data. MCME is a mel-cepstrum domain extension of modulation energy (ME). MCME is extracted on the time trajectory of Mel-frequency cepstral coefficients, while ME is based on the spectrum. As cepstral coefficients are mutually uncorrelated, we expect the MCME to perform better than the ME. To find out the best modulation frequency for MCME, we perform experiments with 4 Hz to 20 Hz modulation frequency. To show effectiveness of the proposed feature, MCME, we compare the discrimination accuracy with the results obtained from the ME and the cepstral flux.

  • PDF

켑스트럼 거리 기반의 음성/음악 판별 성능 향상 (Performance Improvement of Speech/Music Discrimination Based on Cepstral Distance)

  • 박슬한;최무열;김형순
    • 대한음성학회지:말소리
    • /
    • 제56호
    • /
    • pp.195-206
    • /
    • 2005
  • Discrimination between speech and music is important in many multimedia applications. In this paper, focusing on the spectral change characteristics of speech and music, we propose a new method of speech/music discrimination based on cepstral distance. Instead of using cepstral distance between the frames with fixed interval, the minimum of cepstral distances among neighbor frames is employed to increase discriminability between fast changing music and speech. And, to prevent misclassification of speech segments including short pause into music, short pause segments are excluded from computing cepstral distance. The experimental results show that proposed method yields the error rate reduction of$68\%$, in comparison with the conventional approach using cepstral distance.

  • PDF

다차원 MMCD를 이용한 음성/음악 판별 (Speech/Music Discrimination Using Multi-dimensional MMCD)

  • 최무열;송화전;박슬한;김형순
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 추계학술대회 발표논문집
    • /
    • pp.142-145
    • /
    • 2006
  • Discrimination between speech and music is important in many multimedia applications. Previously we proposed a new parameter for speech/music discrimination, the mean of minimum cepstral distances (MMCD), and it outperformed the conventional parameters. One weakness of it is that its performance depends on range of candidate frames to compute the minimum cepstral distance, which requires the optimal selection of the range experimentally. In this paper, to alleviate the problem, we propose a multi-dimensional MMCD parameter which consists of multiple MMCDs with different ranges of candidate frames. Experimental results show that the multi-dimensional MMCD parameter yields an error rate reduction of 22.5% compared with the optimally chosen one-dimensional MMCD parameter.

  • PDF