• Title/Summary/Keyword: 음선

Search Result 81, Processing Time 0.024 seconds

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea (황해 중앙부에서 수중음속의 장기간 모니터링 결과)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.

Effect of expanding low-salinity water in the East China Sea on underwater sound propagation (동중국해 저염분수의 확장이 수중 음파 전달에 미치는 영향)

  • Bum-Jun Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • The salinity of sea water is known as a less influencing variable in the calculation of the sound speed of the sea water. This study investigated how the low salinity of sea water affects the vertical structure of the sound speed near the mouth of the Yangtze (Changjiang) River when the diluted fresh water extends toward the East China Sea in the summer. As a result of comparing two types of sound speeds considered measured and fixed salinity, sound speeds appeared distinguishable when the halocline formed steeper than the thermocline due to Yangtze-River Diluted Water (YRDW). In addition, unlikely with fixed salinity conditions, when measured salinity was considered, an underwater sound channel appeared in the middle of the thermocline of which the source depth is located. Accordingly, considering the salinity, this study suggests using Expendable Conductivity Temperature Depth (XCTD) and Expendable Sound Velocimeter (XSV) rather than Expandable Bathy Thermograph (XBT) when calculating sound speed because of the strong halocline due to YRDW in the summer.

Estimation of Phase Variance of Acoustic Signals Depending on Turbulence Strength Near the Mukho Port in the East Sea of Korea (동해 묵호항 근처에서의 난류세기인자에 따른 음향수신신호의 위상분산 추정)

  • Kim, Jung-Hun;Bok, Tae-Hoon;Paeng, Dong-Guk;Shim, Tae-Bo;Kim, Young-Kyu;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.328-335
    • /
    • 2009
  • Phase variance of the acoustic signals has to be investigated with the research of the medium, because the phase of the acoustic signals carries the information of the medium. The phase compensation of the received signals is required for the signal processing of SAS (Synthetic Aperture Sonar) and underwater communication. In this paper, the phase variance of the acoustic signals was studied depending on the micro-scale-turbulence of ocean. The turbulence strength of the locally isotropic and homogeneous turbulence was calculated, and the phase variance affected by the turbulence strength was computed along the ray paths. The CTD and ADCP data were acquired from a buoy system near the Mukho port in the East Sea of Korea and the ray paths were calculated by the Bellhop algorithm. As a result, the turbulence strength was mainly determined by the variation of temperature and flow speed, changing the phase variance of the received signals. Hence, we thought the phase variance should be considered in the sonar operating system.

Pre-Coding Method for Underwater Digital Communications in a Multipath Channel (다중 전달 경로 채널에서의 수중 디지털 통신을 위한 선 처리 기법)

  • Kim, Tae-Woo;Hwang, A-Rom;Seong, Woo-Jae;Lim, Young-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.154-162
    • /
    • 2008
  • Signals in an underwater channel get distorted by multipath propagation. In this paper, pre-coding method is suggested which helps comprehending the signals with minimum equalization. The signals are transformed based on the knowledge of the impulse response of the channel. Proposed pre-coding method is tested by simulations based on the ray theory and through water tank experiments. In weak multipath environment, in case of an SNR of about 20 dB, BER is $10^{-3}{\sim}10^{-4}$, while in strong multipath environment, similar BER is achieved with SNR of about 30 dB. In order for the pre-coding method to be used for underwater vehicles, channel prediction method utilizing the waveguide invariant is suggested and tested.

Effects of the Complexity of 3D Modeling on the Acoustic Simulations and Auralized Sounds (3D 모델의 구체성이 건축음향 시뮬레이션 및 가청화시재에 미치는 영향)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • The present study examined the effects of the complexity of the 3D models on the results of acoustic simulation which is the predominant tool of the acoustical design of buildings. Also, the effects of the 3D model on the auralized sounds were investigated. In order to carry out the study, four 3D models with different levels of complexity were introduced for a real auditorium which have different numbers of surfaces in the persuit of the guidance of odeon room acoustic software. The set-up of models was also based on the level of transition order of the program. And the acoustic experiments were performed measuring room acoustic parameters including SPL, RT, C80, D50. Acoustic computer simulations were performed using four different models. Then, the results of the computer modeling were compared with the measured acoustical parameters. In addition, sound sources were recorded in the field and auralized sounds were made in convolution with the impulse source made from acoustic modeling. Then, subjective tests were undertaken using auralized sounds. As the results, it was found that the result of the acoustic simulation were closer to the real room acoustic properties when 3D model was more particularly made. For the subjective test, the listening materials were acknowledged as similar with the real sound source when more complex 3D model was used. Then, it could be concluded that the complexity of the 3D model affects the results of the acoustic modeling as well as subjective tests.

Prediction of the Acoustic Performance of a Music Hall Considering the Radiation Characteristics of Korean Traditional Musical Sources (국악음원의 방사특성을 고려한 국악원의 음향 성능 예측)

  • 정철호;이정권;연철호;한찬훈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.146-161
    • /
    • 2004
  • There have been always some difficulties in target setting and conditioning of acoustic performances of the Korean traditional music hall due mainly to the lack of the information on the sound radiation characteristics of Korean musical sources. In this study, the radiation characteristics of four typical Korean traditional musical sources were investigated in precision and their usage was demonstrated: The selected musical sources were Gayageum (string), Daegeum (woodwind), Jango (drum), and Pansori Chang (vocal performance). Each sound source was located at the center of a semi-anechoic chamber and the directivity was determined by the measured sound pressure levels in every 10° angular position, for both vertical and horizontal directions. The directivity pattern of Gayageum varies from a uniform to a complex pattern having many side lobes with the increase of frequency. The main radiation of Daegeum is toward the upward direction. The directivity pattern of Jango is clearly a side-oriented one and the left direction intensity is sharper than its right side at low frequencies. For the Chang, the directivity pattern change from a uniform pattern to a frontally directed one as the frequency goes high. Measured directional and spectral characteristics of traditional Korean music sources were implemented into the computation of architectural acoustic measures for the Busan National Korean Traditional Music Hall which is under construction. Parameters such as RT, SPL, C80, IE, STI were calculated at two receiver positions by using a ray tracing technique. Significant differences in the acoustic measures at receiver positions were observed between the results in using the omni-directional source and the directional one. It is thought that the suggested source data and design method can be used as a basic reference in the future acoustic design of performance halls for the Korean traditional music.

Study on the Backscattered Signal of Swimbladdred Fish: Target Strength due to Length and Behavior of Red Seabream (Pagrus Major) (부레를 가진 어류의 음향산란 강도에 관한 연구: 참돔의 길이 및 행동에 따른 산란강도)

  • 강돈혁;황두진;나정열;김수암
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.100-109
    • /
    • 2001
  • The backscattered sound energy by fish depends on size and physical structure and, most important, on the presence or absence of a swimbladder. Target strength experiments of red seabream (Pagrus major) were conducted by using 38 (split-beam), 120 (split-beam) and 200 kHz (dual-beam) frequencies with live fishes confined in a net-cage and free swimming in tank without the cage, respectively. For 38, 120, and 200 kHz frequencies, target strength equations are expressed as a function of fish length:TS/sub 38kHz/=20 log/sub 1o(l)/-66.41, TS/sub 120kHz/=20 log/sub 1o(1)/-71.80, and TS/sub 200kHz/=20 log/sub 1o(1)/-73.94. To test the acoustic models by using Helmholtz-Kirchhoff ray approximation, predictions of target strength based on swimbladder morphometries are compared with target strength measurements. The target strength of whole fish depends on variations in swimbladder morphology than fish body morphology. In the mean time, when the fish is confined in the net cage, scattering length by the backscattered signal matched with the Gaussian PDF, while under the free-swimming condition, scattering length is close to the Rayleigh PDF.

  • PDF

A Study on the Characteristics of Underwater Sound Transmission by Short-term Variation of Sound Speed Profiles in Shallow-Water Channel with Thermocline (수온약층이 존재하는 천해역에서 단기간 음속구조 변화에 따른 음향 신호 전달 변동에 관한 연구)

  • Jeong, Dong-Yeong;Kim, Sea-Moon;Byun, Sung-Hoon;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.20-35
    • /
    • 2015
  • Underwater acoustic channel impulse responses (CIR) are influenced by sound speed profile (SSP), and the variation of CIR has significant effects on the performance of underwater acoustic communication systems. A significant change of SSP can occur within a short period, which must be considered during the design of underwater acoustic modems. This paper statistically analyzes the effect of the variation of SSP on the long-range acoustic signal propagation in shallow-water with thermocline using numerical modeling based on the data acquired from JACE13 experiment near Jeju island. The analysis result shows that CIR changes variously according to the SSP and the depth of the transmitter and receiver. We also found that when the transmitter and receiver are deeper, the variation of sound wave propagation pattern is smaller and signal level becomes higher. All CIR obtained in this study show that a series of bottom reflections due to downward refraction and small bottom loss in the shallow water with thermocline can be very important factor for long-range signal transmission and the performance of underwater acoustic communication system in time varying ocean environment can be very sensitive to the variation of SSP even for a short period of time.

Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model (동해 천해환경에서 측정된 중주파수 전달손실 측정: Rayleigh 및 HFBL 모델과의 비교)

  • Lee, Dae Hyeok;Oh, Raegeun;Choi, Jee Woong;Kim, Seongil;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.297-303
    • /
    • 2021
  • When sound waves propagate over long distances in shallow water, measured transmission loss is greater than predicted one using underwater acoustic model with the Rayleigh reflection model due to inhomogeneity of the bottom. Accordingly, the US Navy predicts sound wave propagation by applying the empirical formula-based High Frequency Bottom Loss (HFBL) model. In this study, the measurement and analysis of transmission loss was conducted using mid-frequency (2.3 kHz, 3 kHz) in the shallow water of the East Sea in summer. BELLHOP eigenray tracing output shows that only sound waves with lower grazing angle than the critical angle propagate long distances for several kilometers or more, and the difference between the predicted transmission loss based on the Rayleigh reflection model and the measured transmission loss tend to increase along the propagation range. By comparing the Rayleigh reflection model and the HFBL model at the high grazing angle region, the bottom province, the input value of the HFBL model, is estimated and BELLHOP transmission loss with HFBL model is compared to measured transmission loss. As a result, it agrees well with the measurements of transmission loss.