• Title/Summary/Keyword: 은 촉매

Search Result 281, Processing Time 0.04 seconds

고연소속도 추진제용 연소촉매 연구

  • 황갑성;임유진;김창기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.193-198
    • /
    • 1996
  • 고연소속도 HTPB/AP 추진제를 얻기 위하여 현재 각광받고 있는 3종의 철화합물 연소촉매를 선정하여 연소속도 증진효과와 기계적 특성, 공정성 및 노화특성에 미치는 영향을 검토하였다. 사용한 철 화합물은 HTPB 프리폴리머에 silicone-ferrocene이 그라프트된 $BUTACENE^$\circledR$$ 과 결합제 역할을 하는 acylaziridinyl ferrocene(AAF), 그리고 입자크기가 30nm인 $NANOCAT^$\circledR$$ superfine iron oxide(SFIO)이었다. 이들 철 화합물을 추진제에 적용한 결과 공정성의 경우 $BUTACENE^$\circledR$$ 은 혼합점도가 높았으나 pot life의 감소는 없었으며 AAF와 SFIO는 혼합점도는 비교적 낮은 반면 pot life가 현저히 감소하는 경향을 보였다. 추진제의 노화거동은 연소촉매를 사용하지 않았을 때보다 저하되었으나 metal deactivating 산화방지제인 $PRO-TECH^$\circledR$$ 과 함께 사용할 경우 공정성 및 노화특성 모두 바람직한 수준으로 향상되었다. 기계적 특성은 SFIO를 제외하고는 저하되었으며 $BUTACENE^$\circledR$$ 은 프리폴리머로서, AAF는 결합제로서의 기능이 다소 미흡하였다. 한편 연소촉매의 함량에 따른 촉매효과는 AAF>SFIO>$BUTACENE^$\circledR$$ 순이었고 철 함량 측면에서는 AAF>$BUTACENE^$\circledR$$ >SFIO 순이었다.

  • PDF

Long-term Stability of the $V_2O_5/TiO_2$ Honeycomb Catalyst in Flue Gas from Coal Fired Power Plant (석탄화력발전소 배기가스를 이용한 $V_2O_5/TiO_2$ 촉매의 내구성 연구)

  • 이인영;김동화;이정빈;엄희문;지평삼
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.235-236
    • /
    • 1999
  • 보일러와 같은 고정원에서 배출되는 질소산화물을 제거하기 위한 후처리 기술인 선택적촉매환원공정(SCR:Selective Catalytic Reduction)은 안정적이며 탈질효율이 높아 상업적으로 가장 많이 이용되고 있다(Bosch, 1988). 본 연구팀은 가격 및 성능 측면에서 외국산 상업용 촉매와 경쟁할 수 있는 국산 SCR 촉매의 개발을 위하여 국내에서 안료용으로 생산되는 TiO$_2$를 촉매의 담체로 이용, V$_2$O$_{5}$/TiO$_2$ 하니콤 촉매를 제조하여 촉매의 활성 및 특성을 연구 중에 있다(이정빈, 1999).(중략)

  • PDF

Catalytic Decomposition of Hydrogen Peroxide for Application on Micro Propulsion (마이크로 추력기 응용을 위한 과산화수소 촉매 분해 반응)

  • An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2005
  • An experimental investigation of a microthruster that uses hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a mesoscale reactor. Reduction of silver in $H_2\;at\;500^{\circ}C$ resulted in the best reactivity of all the treatment method tested. A mesoscale reactor was built to find the optimum configuration for full decomposition of propellant. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. We measured the conversion rate with varying feed rate of $H_2O_2$ and preheating temperature. With the feed rate of $H_2O_2$, the space time within the reactor varies as well. For the bed length of 20 mm, space time more than 480 s was required for full conversion.

Development of Hydrogen Peroxide Thruster adopted Silver Catalyst (은을 촉매로 사용하는 과산화수소 추력기 개발)

  • Lee, Su-Lim;Lee, Choong-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-73
    • /
    • 2007
  • In recent years hydrogen peroxide has become considerably more attractive as a green rocket propellant so a laboratory model of hydrogen peroxide thruster adopted silver catalyst and a test facility has been developed to research a hydrogen peroxide propulsion. The design scheme of thruster and the test data are presented including ignition delay, efficiency of characteristic exhaust velocity. As a result, 95% of efficiency of characteristic exhaust velocity was obtained at steady state operation condition.

Synthesis Catalytic Application of Several$d^8Transition Metal Diphosphine Complexes, (MCl_2PP) (M = Ni^{2+}, Pd^{2+}, Pt^{2+}, Au^{3+} ; PP = diphosphines)$ (몇가지 $d^8$ 전이금속-디포스핀 착물 ($MCl_2PP$)의 합성과 촉매적 응용 (M = $Ni^{2+}$, $Pd^{2+}$, $Pt^{2+}$, $Au^{3+}$ ; PP = diphosphines))

  • Park Yu-Chul;Kim Kyung-Chae;Cho Young-Jae
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.685-691
    • /
    • 1992
  • The $d^8$-transition metal complexes containing diphosphine, $MCl_2PP$ were prepared by using $K_nMCl_m$ as starting materials, wherein M were Ni(II), Pd(II), Pt(II) and Au(III) and PP were bis(diphenylphosphino)methane(dppm), bis(diphenylphosphino)ethane(dppe), bis(diphenylphosphino)propane (dppp) and bis(diphenylphosphino)ethylene(dppety). The complexes were characterized by the spectral property $(^H-NMR$, $^{31}P-NMR$ and UV-Visible spectra) together with elemental analysis. The complexes were tested for the catalytic activity on the formation reactions of 3(2H)-furanone and cyclic carbonate. The only Ni(II)- and Pd(II)-diphosphine complexes displayed a good catalytic effects in the production of 3(2H)-furanone from 2-methyl-3-butyn-2-ol [reaction (1)]. But all the diphosphine complexes as catalyst were almost inactive towards cyclic carbonate production preaction [reaction (2)].

  • PDF

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite (바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가)

  • Jeong, Bora;Lee, Heesoo;Kim, Eok-Soo;Kim, HongDae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.252-256
    • /
    • 2015
  • Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

Furfural Production From Xylose by Using Formic Acid and Sulfuric Acid (포름산 및 황산 촉매를 이용한 자일로스로부터 푸르푸랄 생산)

  • Lee Seungmin ;Kim Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.561-569
    • /
    • 2023
  • Furfural is a platform chemical that is produced from xylose, one of the hemicellulose components of lignocellulosic biomass. Furfural can be used as an important feedstock for phenolic compounds or biofuels. In this study, we compared and optimized the conditions for producing furfural from xylose in a batch system using two types of catalysts: sulfuric acid, which is commonly used in the furfural production process, and formic acid, which is an environmentally friendly catalyst. We investigated the effects of xylose initial concentration (10 g/L~100 g/L), reaction temperature (140~200 ℃), sulfuric acid catalyst (1~3 wt%), formic acid catalyst (5~10 wt%), and reaction time on the furfural yield. The optimal conditions according to the type of catalyst were as follows. For sulfuric acid catalyst, 3 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 10min of reaction time resulted in a maximum furfural yield of 59.0%. For formic acid catalyst, 5 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 150 min of reaction time resulted in a furfural yield of 65.3%.

Removals of Formaldehyde by Silver Nano Particles Attached on the Surface of Activated Carbon (나노 은입자가 첨착된 활성탄의 포름알데히드 제거특성)

  • Shin, Seung-Kyu;Kang, Jeong-Hee;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.936-941
    • /
    • 2010
  • This study was conducted to investigate formaldehyde removals by silver nano-particles attached on the surface of granular activated carbon (Ag-AC) and to compare the results to those obtained with ordinary activated carbon (AC). The BET analysis showed that the overall surface area and the fraction of micropores (less than $20{\AA}$ diameter) of the Ag-AC were significantly decreased because the silver particles blocked the small pores on the surface of the Ag-AC. The formaldehyde removal capacity of the Ag-AC determined using the Freundlich isotherm was higher than that of AC. Despite the decreased BET surface area and micropore volume, the Ag-AC had the increased removal capacity for formaldehyde, presumably due to catalytic oxidation by silver nano-particles. In contrast, the adsorption intensity of the Ag-AC, estimated by 1/n in the Freundlich isotherm equation, was similar to that of the ordinary AC, indicating that the surface modification using silver nano-particles did not affect the adsorption characteristics of AC. In a column experiment, the Ag-AC also showed a longer breakthrough time than that of the AC. Simulation results using the homogeneous surface diffusion model (HSDM) were well fitted to the breakthrough curve of formaldehyde for the ordinary AC, but the predictions showed substantial deviations from the experimental data for the Ag-AC. The discrepancy was due to the catalytic oxidation of silver nano-particles that was not incorporated in the HSDM. Consequently, a new numerical model that takes the catalytic oxidation into accounts needs to be developed to predict the combined oxidation and adsorption process more accurately.