• 제목/요약/키워드: 은닉 마코프 모델

검색결과 82건 처리시간 0.02초

문자-음성 합성기의 데이터 베이스를 위한 문맥 적응 음소 분할 (Context-adaptive Phoneme Segmentation for a TTS Database)

  • 이기승;김정수
    • 한국음향학회지
    • /
    • 제22권2호
    • /
    • pp.135-144
    • /
    • 2003
  • 본 논문에서는 문-음성 합성기에서 사용되는 대용량 데이터 베이스의 구성을 목적으로 하는 음성 신호의 자동 분할기법을 기술하였다. 주된 내용은 은닉 마코프 모델에 기반을 둔 음소 분할과 여기서 얻어진 결과를 초기 음소 경계로 사용하여 이를 자동으로 수정하는 방법으로 구성되어 있다. 다층 퍼셉트론이 음성 경계의 검출기로 사용되었으며, 음소 분할의 성능을 증가시키기 위해, 음소의 천이 패턴에 따라 다층 퍼셉트론을 개별적으로 학습시키는 방법이 제안되었다. 음소 천이 패턴은 수작업에 의해 생성된 레이블 정보를 기준 음소 경계로 사용하여, 기준 음소 경계와 추정된 음소 경계간의 전체 오차를 최소화하는 관점에서 분할되도록 하였다. 단일 화자를 대상으로 하는 실험에서 제안된 기법을 통해 생성된 음소 경계는 기준 경계와 비교하여 95%의 음소가 20 msec 이내의 경계 오차를 갖는 것으로 나타났으며, 평균 자승 제곱근 오차면에서 수정 작업을 통해 25% 향상된 결과를 나타내었다.

손실 데이터 이론을 이용한 강인한 음성 인식 (Robust Speech Recognition Using Missing Data Theory)

  • 김락용;조훈영;오영환
    • 한국음향학회지
    • /
    • 제20권3호
    • /
    • pp.56-62
    • /
    • 2001
  • 본 논문에서는 손실이 발생하는 상황에서 높은 인식률을 유지하기 위해서 손실 데이터 이론을 음성 인식기에 적용하였다 손실 데이터 이론은 일반적으로 이용되는 통계적 정합 방법인 은닉 마코프 모델 (HMM: hidden Markov model) 중 연속 Gaussian확률 밀도 함수를 이용하여 음성 특징들의 출력 확률을 나타내는 경우에 쉽게 적용할 수 있다는 장점을 갖고 있다. 손실 데이터 이론의 방법 중 계산량이 적고 인식기에 적용이 쉬운 주변화(marginalization)방법을 사용하였으며 특징 벡터의 특정 차수나 시간열의 손실 검출 방법은 음성 신호의 에너지와 주위 배경 잡음의 에너지의 차이가 임계치보다 작게 되는 부분을 찾는 주파수 차감 방법을 이용하였다. 본 논문에서 제안한 손실 영역의 신뢰도 평가는 분석 구간이 모음일 확률을 계산해서 비교적 잉여 정보가 많이 포함된 모음화된 구간의 손실만을 처리하도록 하였다. 제안한 방법을 사용하여 여러 잡음 환경에 대해서 기존의 손실 데이터 처리 방법만을 사용한 경우보다 452 단어의 화자독립 단어 인식 실험을 수행한 결과 오류율측면에서 평균적으로 약 12%의 성능 향상을 얻을 수 있었다.

  • PDF

시간축 변환을 이용한 음성 인식기의 성능 향상에 관한 연구 (Study on the Improvement of Speech Recognizer by Using Time Scale Modification)

  • 이기승
    • 한국음향학회지
    • /
    • 제23권6호
    • /
    • pp.462-472
    • /
    • 2004
  • 본 논문에서는 자동 음성 인식기의 성능 저하를 일으키는 요인으로서 발성 속도의 변동에 따를 성능 저하를 보상하기 위한 기법을 제안하였다. 새로운 기법의 제안에 앞서서. 먼저 발성 속도의 변화에 따른 기존의 은닉 마코프 모델을 이용한 음성 인식기의 성능을 정량적으로 분석하였다. 이러한 분석을 통해 발성 속도에 따른 유의한 성능 저하를 관찰하고, 주어진 음성으로부터 발성 속도를 정량적으로 나타낼 수 있는 변수를 도입하였다. 발성 속도를 학습 시 사용한 음성과 유사하게 변화시키기 위해 본 논문에서는 음성 신호에 대한 시간축 변환을 사용하였으며, 최종적으로 발성 속도에 따라 선택적으로 시간축 변환을 적용하여 발성 속도의 변동에 따른 음성 인식의 성능 저하를 보상할 수 있는 기법을 제안하였다. 10자리의 이동통신용 전화번호를 이용한 음성 인식의 실험을 통해, 제안된 기법은 빠르게 발성하는 음성에 대해 15.5%의 오류율 감소를 가져오는 것을 확인할 수 있었다.

화자 확인에서 SPRT를 위한 새로운 테스트 데이터 생성 (A New Teat Data Generation for SPRT in Speaker Verification)

  • 서창우;이기용
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.42-47
    • /
    • 2003
  • 본 논문에서 제안하는 방법은 화자 확인 (speaker verification)에서 시퀀스 확률비 테스트 (SPRT: sequential probability ratio test)를 위한 시작 프레임의 샘플 시프트를 이용해서 새로운 테스트 데이터를 생성하는 방법이다. SPRT는 테스트 계산량을 줄일 수 있는 효과적인 알고리즘이다. 그러나 테스트의 결정과정에서 SPRT 방법은 입력신호가 확률밀도 함수로부터 독립적이고 균일하게 분포되어 있다는 가정하에 수행할 수 있으며, 또한 발성길이가 짧은 데이터에는 적용하기에 적절하지 못하다. 제안한 방법은 시작 프레임의 샘플 시프트를 통한 새로운 테스트 데이터를 생성하는 방법이기 때문에 테스트 데이터의 길이에 상관없이 SPRT를 수행할 수 있다. 또한 SPRT 방법에서 고려해야 하는 데이터의 상관성은 주성분 분석(principal component analysis)을 이용함으로써 효과적으로 제거하였다. 실험 결과 제안한 방법은 기존의 방법보다 샘플시프트를 위한 데이터의 계산량은 약간 증가하였지만, 등가오류율 (EER: equal error rate)에서 평균0.7%이상 좋은 성능결과를 보였다.

PDA 환경에서 자동화자 확인의 계산량 개선을 위한 연구 (A Study for Complexity Improvement of Automatic Speaker Verification in PDA Environment)

  • 서창우;임영환;전성채;장남영
    • 융합신호처리학회논문지
    • /
    • 제10권3호
    • /
    • pp.170-175
    • /
    • 2009
  • 본 논문은 PDA 디바이스에서 개인정보를 보호하기 위한 자동화자확인 시스템을 제안한다. 최근 M-커머스와 같은 모바일 환경을 위한 PDA의 용량이 확장되고 사용이 증가되고 있다. 그러나 너무 많은 계산량 때문에 PDA 디바이스에서 자동화자확인의 실질적인 응용은 여전히 많은 어려움이 존재한다. 본 논문에서는 이러한 문제점을 해결하기 위해서 음성발성 동안 스펙트럼 차감법과 음성 검출과 같은 전처리를 수행함으로써 계산량을 줄일 수 있는 방법을 적용하였다. 또한 빠른 처리 결과를 얻기 위한 은닉마코프모델의 최적 상태 정합과 시퀀스 확률비 테스트를 적용하였다. 전체적인 시스템은 PDA디바이스의 제한된 메모리와 낮은 CPU 속도에 적합하도록 간결하게 구현하였다.

  • PDF

로봇 제어를 위한 의미 있는 손동작 추출 방법 (An Extraction Method of Meaningful Hand Gesture for a Robot Control)

  • 김아람;이상용
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.126-131
    • /
    • 2017
  • 본 논문에서는 손짓을 이용하여 로봇에게 명령을 내릴 때, 사용자의 여러 가지 손짓 중 의미 있는 동작을 추출하기 위한 방법을 제시한다. 로봇에게 명령을 내릴 때, 사람들의 손짓은 준비동작, 본 동작, 마무리 동작으로 구분할 수 있다. 여기에서 본 동작이 로봇에게 명령을 전달하는 의미 있는 동작이고 다른 동작은 그 동작을 위한 의미 없는 보조 동작이다. 따라서 연속적인 손짓에서 본 동작만을 추출해야 한다. 또한 사람들은 무위식적으로 손을 움직일 수 있는데 이러한 동작들 역시 의미가 없는 동작으로 로봇이 판단하여야 한다. 본 연구에서는 키넥트 센서를 이용하여 획득한 거리영상에서 사람의 골격자료를 획득하여 손을 추출하고, 칼만필터를 이용하여 손의 위치를 추적하면서 의미 있는 손동작과 의미 없는 손동작을 구분하고 은닉 마코프 모델을 이용하여 손짓을 인식한다.

인자화된 최대 공산선형회귀 적응기법을 적용한 해양IT융합기술을 위한 HMM기반 음성합성 시스템 (Factored MLLR Adaptation for HMM-Based Speech Synthesis in Naval-IT Fusion Technology)

  • 성준식;홍두화;정민아;이연우;이성로;김남수
    • 한국통신학회논문지
    • /
    • 제38C권2호
    • /
    • pp.213-218
    • /
    • 2013
  • 은닉 마코프 모델 (hidden Markov Model, HMM) 기반 음성 합성 시스템에서 파라미터 적응을 위해 널리 쓰이는 기법으로 최대 공산 선형 회귀 (maximum likelihood linear regression, MLLR)이 있다. 이전 연구에서 우리는 각 MLLR 파라미터를 인자화된 MLLR (Factored MLLR, FMLLR) 형태로 확장하는 형태를 제안하였다. FMLLR 파라미터를 기존의 EM 알고리즘 형태로 구하는 기법 역시 제안하였고, 이를 통해 보완 정보를 활용하여 적응 학습을 수행할 수 있게 하였다. 본 논문에서는, FMLLR 기법을 스펙트럼 파라미터에 사용하는 것뿐 아니라 피치에도 적용하여 그 성능을 향상시키는 것에 대한 탐구를 수행하였다. 감정 음성을 생성하는 여러 실험을 통해, 우리는 제안하는 기법이 피치 및 스펙트럼에 대해 효과적으로 작용하는 것을 확인하였다.

음향신호 기반 터널 돌발상황 검지시스템 (Acoustic Signal-Based Tunnel Incident Detection System)

  • 장진환
    • 한국ITS학회 논문지
    • /
    • 제18권5호
    • /
    • pp.112-125
    • /
    • 2019
  • 본 연구에서는 음향신호 처리기반 터널 돌발상황 탐지시스템을 개발하고 평가하였다. 개발 시스템은 알고리즘, 음향신호 수집기, 서버시스템 세 가지 구성 요소로 구성된다. 비음수 텐서 분해와 은닉 마코프 모델을 이용하여 돌발상황음(충돌, 스키드)을 검출한다. 개발시스템 성능은 제한된 환경과 실제 운영환경에서 평가되었다. 그 결과, 제한된 환경 평가에서 거리별로 80~95%의 검지성능을 보였고, 실제 운영환경에서는 94% 검지성능을 보였다. 기존의 터널 돌발상황 검지기술인 영상 및 루프검지기 기반 시스템 성능과 비교한 결과, 본 개발 기술의 장점은 신속한 검지시간(2초 이내)인 것으로 나타났다.

HMM 기반 TTS와 MusicXML을 이용한 노래음 합성 (Singing Voice Synthesis Using HMM Based TTS and MusicXML)

  • 칸 나지브 울라;이정철
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.53-63
    • /
    • 2015
  • 노래음 합성이란 주어진 가사와 악보를 이용하여 컴퓨터에서 노래음을 생성하는 것이다. 텍스트/음성 변환기에 널리 사용된 HMM 기반 음성합성기는 최근 노래음 합성에도 적용되고 있다. 그러나 기존의 구현방법에는 대용량의 노래음 데이터베이스 수집과 학습이 필요하여 구현에 어려움이 있다. 또한 기존의 상용 노래음 합성시스템은 피아노 롤 방식의 악보 표현방식을 사용하고 있어 일반인에게는 익숙하지 않으므로 읽기 쉬운 표준 악보형식의 사용자 인터페이스를 지원하여 노래 학습의 편의성을 향상시킬 필요가 있다. 이 문제를 해결하기 위하여 본 논문에서는 기존 낭독형 음성합성기의 HMM 모델을 이용하고 노래음에 적합한 피치값과 지속시간 제어방법을 적용하여 HMM 모델 파라미터 값을 변화시킴으로서 노래음을 생성하는 방법을 제안한다. 그리고 음표와 가사를 입력하기 위한 MusicXML 기반의 악보편집기를 전단으로, HMM 기반의 텍스트/음성 변환 합성기를 합성기 후단으로서 사용하여 노래음 합성시스템을 구현하는 방법을 제안한다. 본 논문에서 제안하는 방법을 이용하여 합성된 노래음을 평가하였으며 평가결과 활용 가능성을 확인하였다.

다중대역 음성인식을 위한 부대역 신뢰도의 추정 및 가중 (Estimation and Weighting of Sub-band Reliability for Multi-band Speech Recognition)

  • 조훈영;지상문;오영환
    • 한국음향학회지
    • /
    • 제21권6호
    • /
    • pp.552-558
    • /
    • 2002
  • 최근에 Fletcher의 HSR (human speech recognition) 이론을 기초로 한 다중대역 (multi-band) 음성인식이 활발히 연구되고 있다. 다중대역 음성인식은 주파수 영역을 다수의 부대역으로 나누고 별도로 인식한 뒤 부대역들의 인식결과를 부대역 신뢰도로 가중 및 통합하여 최종 판단을 내리는 새로운 음성인식 방식으로서 잡음환경에 특히 강인하다고 알려졌다. 잡음이 정상적인 경우 무음구간의 잡음정보를 이용하여 부대역 신호대 잡음비(SNR)를 추정하고 이를 가중치로 사용하기도 하였으나, 비정상잡음은 시간에 따라 특성이 변하여 부대역 신호대 잡음비를 추정하기가 쉽지 않다. 본 논문에서는 깨끗한 음성으로 학습한 은닉 마코프 모델과 잡음음성의 통계적 정합에 의해 각 부대역에서 모델과 잡음음성 사이의 거리를 추정하고, 이 거리의 역을 부대역 가중치로 사용하는 ISD (inverse sub-band distance) 가중을 제안한다. 1500∼1800㎐로 대역이 제한된 백색잡음 및 클래식 기타음에 대한 인식 실험 결과, 제안한 방법은 정상 및 비정상대역제한잡음에 대하여 부대역의 신뢰도를 효과적으로 표현하며 인식 성능을 향상시켰다.