• Title/Summary/Keyword: 윤형섭

Search Result 105, Processing Time 0.023 seconds

Compressibility and Stiffness Characteristics of Vanishing Mixtures (지반 소실 혼합재의 압축성 및 강성 특성)

  • Truong, Q. Hung;Eom, Yong-Hun;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.103-111
    • /
    • 2008
  • Soils naturally contain grains of different minerals which may be dissolved under chemical or physical processes. The dissolution leads changes in microstructure of particulate media, such as an increase in local void or permeability, which affects the strength and deformation of soils. This study focuses on the small strain stiffness characteristics of vanishing mixtures, which consist of sand and salt particles at different volume fractions. Experiments are carried out in a conventional oedometer cell (Ko-loading) integrated with bender elements for the measurement of shear waves. Dissolutions of particles are implemented by saturating the mixtures at various confining stresses. Axial deformation and shear waves are recorded after each loading stage and during dissolution process. Experimental results show that after dissolution, the vertical strain and the void ratio increase, while the shear wave velocity and small strain shear modulus decrease. The decrease of the velocity results from the void ratio increase and particle contact decrease. The process monitoring during dissolution of the particles shows that the vertical strain dramatically increases at the beginning of the saturation process and converges after vanishing process finishes, and that the shear wave velocity decreases at the beginning and increases due to the particle reorientation. Specimens prepared by sand and salt particles are proved to be able to provide a valuable insight in macro structural behaviors of the vanishings mixtures.

Evaluation of Consolidation Properties in Soft Soils Using Elastic and Electromagnetic Waves (전단파와 전자기파를 이용한 연약 지반의 실내 압밀 특성 평가)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.25-34
    • /
    • 2008
  • A new hybrid oedometer cell is designed and manufactured to investigate a behavior of soft soils by using elastic and electromagnetic waves during consolidation test. Bender elements, which generate and detect shear waves, are placed in the top cap and the bottom plate and mounted on the oedometer wall. Double wedge type electrical resistance probe, which measures local void ratio change, is positioned onto the top cap of the oedometer cell. The bender elements and the electrical resistance probe are anchored into a nylon set screw with epoxy resin. The nylon set screw with epoxy resin minimizes directly transmited elastic waves through the oedometer cell due to impedence mismatch and allows for easy replacement of defected bender elements and electrical resistance probe. Primary consolidation time can be estimated from the slope of electrical resistance versus log time curve and the evolution of shear wave velocity. The shear wave velocity can be used to assess inherent anisotropy when disturbance effects are minimized because particle alignment affects the shear wave velocity. The void ratios evaluated by the electrical resistance probe are similar to those by the settlement during consolidation. This study suggests that the shear wave velocity and the electrical resistance can provide complementary imformations to understand consolidation characteristics such as primary consolidation, anisotropy, and void ratio.

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Development and Application of Ultra Small Micro-Cone Penetrometer (초소형 마이크로콘 관입시험기의 개발 및 적용)

  • Lee, Jong-Sub;Shin, Dong-Hyun;Yoon, Hyung-Koo;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.77-86
    • /
    • 2008
  • The disturbance zone and measured values are affected by the size of the penetrometer. The local value may be measured by the smaller penetrometer. An ultra small Micro-Cone penetrometer (5mm in outer diameter) is designed and manufactured to characterize soil properties with minimum disturbance during penetration tests. The tip resistance is measured by using stain gauges attached near the Micro-Cone. In addition, the friction sleeve is adopted to effectively remove the skin friction from the tip resistance. Design concern includes the installation of stain gauges, circuits, penetration systems, penetration rate, sampling rate, operating temperature, and calibration. Application tests show that the clay interface, and the soil layers consisting of clay and sand are clearly detected by the Micro-Cone. Furthermore, the cone tip resistances measured by the Micro-Cone and the miniature cone (16mm in outer diameter) are similar. Note the resolution is much higher in the Micro-Cone. This study shows that the Micro-Cone may effectively detect the soil interface with high resolution, and with minimum disturbance.

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

Characteristics of Shear Wave Velocity as Stress-induced and Inherent Anisotropies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Truong, Hung-Quang;Cho, Tae-Hyeon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.47-54
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomena are negligible. However, the terms of effective stresses are divided into the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by ${\alpha}$ parameters and ${\beta}$ exponents that are experimentally determined. The ${\beta}$ exponents are controlled by contact effects of particulate materials (sizes, shapes, and structures of particles) and the ${\alpha}$ parameters are changed by contact behaviors among particles, material properties of particles, and type of packing (i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies by using bender elements. Results show the shear wave velocity depends on the stress-induced anisotropy for round particles. Furthermore, the shear wave velocity is dependent on particle alignment under the constant evvective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully estimated and used for the design and construction of geotechnical structures.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

The Prediction Method of the Small Strain Shear Modulus for Busan Clay Using CPT and DMT (CPT와 DMT를 이용한 부산점토의 최대전단탄성계수 추정방법에 관한 연구)

  • Hong, Sung-Jin;Yoon, Hyung-Ko;Lee, Jong-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.5-16
    • /
    • 2009
  • The is study is to evaluate the small strain shear modulus ($G_{max}$) of Busan clay using in-situ penetration tests. A series of dilatometer tests (DMT) and piezocone penetration tests (CPTu) are performed at Busan newport and Noksan sites, and hybrid oedometer tests are also carried out on the specimens obtained from both sites. The $G_{max}$ is evaluated from the shear wave velocity ($V_s$) measured by the bender elements installed at the boundary of oedometer cell. By analyzing these data, the relationship of $G_{max}$ and state variables, such as confined stress and void ratio, is developed. The analysis of lab and in-situ test results reveals that the ratio of $G_{max}$ to $q_t$ is inversely proportional to the plasticity index while the ratio of $G_{max}$ to $E_D$ has a linear relationship with ($I/I_D$)$(p_a/{\sigma}'_v)^{0.5}$. Two correlations suggested in this study, based on CPT and DMT results, appear to provide reasonable predictions of the small strain shear modulus.

Porosity Evaluation of Offshore Soft Soils by Electrical Resistivity Cone Probe (전기비저항 콘 프로브를 이용한 해안 연악 지반의 간극률 산정)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Choi, Yong-Kyu;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.45-54
    • /
    • 2009
  • The electrical characteristics of soils have been used for investigating soil properties. The purpose of this study is the development and application of the electrical resistivity cone probe (ERCP) for the evelation of the porosity in the field with high precision. The shape of the probe tip is a cone shape to minimize the disturbance during penetration. In addition, the four terminal pair configuration is adopted to minimize the electrical interference. The electrical resistances are continuously measured during penetration of the ERCP using penetration rigs with 0.33 mm/sec penetration rate at Incheon and Busan sites. With the measured resistance profile and electrical resisivity of electrolyte of undisturbed samples, soil porosity profiles are obtained by using Archie's law. The empirical coefficients for the Archie's law are obtained based on the electrolyte extracted from the undisturbed samples. The estimated porosity profiles show similar trends to those of in-situ penetration tests such as SPT, CPT, and DMT. This study suggests that the ERCP may be an effective tool for the porosity estimation in the field with minimum disturbance.

Evaluation of Disturbance Effect of Penetrometer by Dissipation Tests (소산 실험을 이용한 관입 장비의 교란 효과 추정)

  • Yoon, Hyung-Koo;Hong, Sung-Jin;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.339-347
    • /
    • 2008
  • The penetration of the probe produces the excess pore pressure due to the disturbance. The objective of this study is to evaluate the disturbance zone by using the dissipation of the excess pore water pressure, which was generated due to the penetration of the penetrometer with different size. The CPT, DMT and FVP (Field Velocity Probe) are adopted for in-situ tests. The tests are carried out in the construction site of north container pier of Busan new port, Korea where is accelerating the consolidation settlement using plastic board drains (PBD) and surcharges by crushed gravels. The coefficient of consolidation $(C_h)$ and soil properties are deduced by the laboratory test. The in-site tests are performed after the predrilling the surcharge zone at the point of 90% degree of consolidation. To minimize the penetration effect, the horizontal distance between penetration tests is 3m, the change of the pore pressure is monitored at the fixed depth of 24m. The coefficient of consolidation $(C_h)$ and the $t_{50}s$ are calculated based on the laboratory test and the in-situ data, respectively. The equvalent radi based on the $t_{50}$ shows that the FVP and the DMT produce the smallest and the greatest equivalent radi, respectively.