• 제목/요약/키워드: 육각머리 볼트

검색결과 2건 처리시간 0.014초

다단포머-볼트류 공정 및 금형설계 자동화 시스템 개발 (A Study of Automated Process Planning and Die Design for Multi Former-Bolt Products)

  • 박철우;강정훈;이준호;김철;김문생;최재찬
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.29-38
    • /
    • 2003
  • This paper deals with an automated computer-aided process planning and die design system with which designer can determine operation sequences even after only a little experience in process planning and die design of multi former-bolt products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge base consisting of design rules is built. Knowledge fur the system is formulated from plasticity theories, empirical results and the empirical knowledge of field experts. Programs for the system have been written in AutoLISP for AutoCAD with a personal computer. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and die design module considers several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. It can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution and the level of the required forming loads by controlling the forming ratios. The system uses 2D geometry recognition and is integrated with the technology of process planning, die design, and CAE analysis. The standardization of die parts for multi former-bolt products requiring a cold forging process is described. The system developed makes it possible to design and manufacture multi former-bolt products more efficiently.

M10 육각 머리 볼트 다단 금형 설계 및 단조 성형해석 자동화 프로그램 개발 (Development of M10 Hex Head Bolt Multi-stage Die Design and Forging Analysis Automation Program)

  • 오민성;이사랑;최정묵;홍석무
    • 소성∙가공
    • /
    • 제33권5호
    • /
    • pp.341-347
    • /
    • 2024
  • Many studies have focused on the optimal design of multi-stage forging molds. For optimal design progress, geometry parameters must be automatically modified, and the updated analysis file delivered. However, existing automation processes set and change parameters at the analysis input file stage, limiting them to simpler tasks like 2D shapes and basic process conditions (e.g., friction, elasticity), making it challenging to handle 3D asymmetric shapes. To address these limitations, an automated program was developed that modifies geometry directly in the CAD model, enabling the automation of complex 3D and asymmetrical shapes. In this process, a 3D mold is generated immediately after the drawing is input, automating the design of both the product and the mold without manual intervention. The program's effectiveness was demonstrated in the design and forging analysis of a multi-stage mold for M10 hex head bolts. This fully automated program reduced preprocessing time by approximately 6.7 times and successfully performed sensitivity analysis without manual input.