• Title/Summary/Keyword: 유효 탄성계수

Search Result 163, Processing Time 0.018 seconds

Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete (포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구)

  • Keon, Seung-Zun;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.185-197
    • /
    • 2001
  • This paper dealt with modification of effective crack length model (ECM) by adding Poisson's ratio term to evaluate fracture toughness of asphalt concrete which varies its material property by temperature. The original ECM model was developed for solid materials, such as cement concrete, and Poisson's ratio of materials was not considered. However, since asphalt concrete is sensitive to temperature variation and changes its Poisson's ratio by temperature, it should be taken into consideration to know exact fracture property under various temperatures. Four binders, including 3 polymer-modified asphalt (PMA) binders, were used to make a dense-grade asphalt mixture and 3-point bending test was peformed on notched beam at low temperatures, from -5oC to 35oC. Elastic modulus, flexural strength and fracture toughness were obtained from the test. The results showed that, since Poisson's ratio was considered, the more accurate test values could be obtained using modified ECM equation than original ECM. PMA mixture showed higher stiffness and fracture toughness than normal asphalt mixture under very low temperatures.

  • PDF

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Elastic Properties and Repeated Deformation Reliabilities of Stiffness-Gradient Stretchable Electronic Packages (강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/FPCB structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate. The elastic characteristics of the stretchable packages were estimated and their long-term reliabilities on stretching cycles and bending cycles were characterized. With 0.28 MPa, 1.74 MPa, and 1.85 GPa as the elastic moduli of the soft PDMS, hard PDMS, and FPCB, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was estimated as 0.6 MPa. The resistance of the stretchable packages varied for 2.8~4.3% with stretching cycles ranging at 0~0.3 strain up to 15,000 cycles and for 0.9~1.5% with 15,000 bending cycles at a bending radius of 25 mm.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF

Evaluation of Subgrade Stiffness using Pressuremeter Test (공내재하시험에 의한 포장하부기초 강성도 평가)

  • Lim, Yu-Jin;Hai, Nguyen Tien;Jang, Duk-Sun
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.25-36
    • /
    • 2004
  • The pressuremeter test can be used as an effective tool for evaluating stiffness of lower pavement layers including subgrade and subbase. At present, the most practical and applicable methods for evaluation of the stiffness of the subgrade and subbase are PBT and CBR in Korea. However, these methods have inherent drawbacks and large variabilities of test results themselves. In this study, an evaluation method and a test procedure that can be used for decision of pavement stiffness using pressuremeter were developed. The obtained results representing stiffness of the subgrade and subbase can replace PBT's soil reaction value k and CBR in design methods. It is found that the developed procedure based on the pressuremeter can provide an effective correaltion between the PBT's soil reaction value k and PMT's reloading modulus ($E_R$).

  • PDF

Effects of Temperature and Water Pressure on the Material Properties of Granite & Limestone from Gagok Mine (온도와 수압이 가곡광산 화강암과 석회암의 물성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • This study focuses on having a temperature and water pressure effects on the change of material properties of rocks. Granite and limestone specimens from Gagok Mine were thermally treated with predetermined temperatures of 200, 300, 400, 500, 600 and $700^{\circ}C$ (excepting $700^{\circ}C$ for limestone) to estimate the reduction of material properties of rocks caused by heat. Specific gravity, effective porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus and Poisson's ratio for pre-heated specimens were measured. With increasing temperature, material properties of both rock specimens change sequentially. Significant changes of specific gravity, effective porosity and elastic wave porosity occur above $400^{\circ}C$ for granite and $300^{\circ}C$ for limestone. Changes of uniaxial compressive strength, Young's modulus and Poisson's ratio seem to be similar to those of physical properties. GSI of 500, 600 and $700^{\circ}C$ specimens inferred by using uniaxial compressive strength and Young's modulus of preheated granite specimens is found to be 81, 66 and 58 each. In case of pre-heated limestone specimens of 400, 500 and $600^{\circ}C$, the corresponding GSI is 76, 71 and 65 each. 500, 600 and $700^{\circ}C$ granite specimens and 400, 500 and $600^{\circ}C$ limestone specimens were pressurized to 7.5 MPa and their effective porosity, elastic wave velocity, uniaxial compressive strength and Young's modulus were measured. The average value of material properties (mentioned above) of 500, 600 and $700^{\circ}C$ granite specimens under water pressure compared with material properties of non-pressurized pre-heated specimens exhibits the reduction of 7.6, 11.3 and 14.9%, respectively. In case of 400, 500 and $600^{\circ}C$ limestone specimens under water pressure, the average value of material properties decreases by 8.2, 13.8 and 21.9%, respectively.

Compression and Shear Capacity of Rubber Bearings with Various Geometric Parameters (다양한 기하학적 인자를 고려한 고무받침의 압축 및 전단 내력)

  • Park, Ji Yong;Kim, Joo Woo;Jung, Hie Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.559-570
    • /
    • 2014
  • In this study, compression and shear characteristics of laminated rubber bearings and lead rubber bearings with various parameters are investigated by using material and geometric nonlinear three-dimensional finite element analysis. Rubber coupon tests are performed to make a model of the laminated rubber bearings. In addition, the material constants of the rubber are calculated by the curve fitting process of stress-strain relationship. The finite element analysis and experimental tests of the laminate rubber bearings are used to verify the validity of the rubber material constants. It is seen that the compression behavior of the laminated rubber bearings and lead rubber bearings mainly varies depending on the first shape factors and their shear behavior significantly varies depending on the second shape factors. In addition, the horizontal stiffness and energy dissipation capacity of lead rubber bearing are increased when the diameter of a lead bar is increased.

Calculation of Effective Material Property for Multi-Grain Orthotropic Material by BEM (경계요소법에 의한 다결정 직교 이방성 재료의 유효 재료 상수의 계산)

  • Kim, Dong-Eun;Lee, Sang-Hun;Jeong, Il-Jung;Lee, Seok-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.713-719
    • /
    • 2008
  • Most of the MEMS parts are made of multi-grain silicon wafer, which is the orthotropic material and its material direction is arbitrary. The reliability of the parts must be guaranteed in order to use for the commercial usage. The need of the structural analysis of its parts emerges an important factor. The material properties of the MEMS parts are calculated by the numerical method in order to reduce a material test. In this study, the effective elastic modulus and its Poisson's ratio are calculated by the boundary element method(BEM) and are compared with the results by the finite element method(FEM).

A Steel Spacing for Crack Control in RC Flexural Members with an Effective Modulus of Elastic (유효탄성계수를 반영한 철근콘크리트 휨부재의 균열제어를 위한 철근 간격)

  • Choi, Seung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.98-105
    • /
    • 2018
  • Cracks in RC members occurred as a result of material and structural factors. The crack width and a crack location are very difficult to examine. A direct crack control method and indirect crack control method to control a crack are presented in the KHBDC (LSD) and KSCDC (2012). In the KSCDC text, cracks are controlled by steel spacing indirectly under a service load. On the other hand, in the KSCDC appendix, cracks are controlled by a crack width directly under a sustained load. In particular, the loading state considered is different. On the other hand, cracks are controlled under a combination of service load and an effective elastic modulus is used in KHBDC. Therefore, in this study, an effective elastic modulus that can reflect the ratio of the sustained load and live load was applied, and a maximum steel spacing was calculated through a design crack width. A variable interpretation was carried out, and a rational crack control method was assessed. As a result, a steel spacing through the design crack width in the KSCDC was smaller than that from the design crack width in the KHBDC, which leads to a conservative design. In addition, the maximum steel spacing suggested in this study has a consistency eliminating the difference between direct crack control and indirect crack control.

Numerical Implication of Concrete Material Damage at the Finite Element Levels (콘크리트 재료손상에 대한 유한요소상의 의미)

  • Rhee, In-Kyu;Roh, Young-Sook;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.37-46
    • /
    • 2006
  • The principal objective of this study is to assess the hierarchical effects of defects on the elastic stiffness properties at different levels of observation. In particular, quantitative damage measures which characterize the fundamental mode of degradation in the form of elastic damage provide quite insightful meanings at the level of constitutive relations and at the level of structures. For illustration, a total of three model problems of increasing complexity, a 1-D bar structure, a 2-D stress concentration problem, and a heterogeneous composite material made of a matrix with particle inclusions. Considering a damage scenario for the particle inclusions the material system degrades from a composite with very stiff inclusions to a porous material with an intact matrix skeleton. In other damage scenario for the matrix, the material system degrades from a composite made of a very stiff skeleton to a disconnected assembly of particles because of progressive matrix erosion. The trace-back and forth of tight bounds in terms of the reduction of the lowest eigenvalues are extensively discussed at different levels of observation.