• Title/Summary/Keyword: 유효 열용량

Search Result 9, Processing Time 0.023 seconds

Determination of the Frozen Penetration Depth of a Freezing Soil Medium including a Pipeline in a Closed System (파이프라인이 매설된 폐쇄형 동결토의 동결심도 결정)

  • Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • The study was focused on the development of computational scheme in three dimensional configurations by applying effective heat capacity model to the numerical procedure in order to predict the temperature profiles of a buried pipeline and the frozen penetration depth(FPD) of a freezing soil medium. To realize this, the investigator conducted the unsteady state heat transfer analysis, using the commercial code ABAQUS, for the freezing granite soil medium including a pipeline in a closed system. The proposed model took into consideration the phase change effect of in situ pore water in the frozen fringe. The comparison of results obtained by the proposed model and the actual performances was valuable in establishing a level of confidence in the application of introduced theory.

Characteristics of heat transfer and bubble around horizontal tube in a fluidized bed heat exchanger (유동층 열교환기의 수평관에서 열전달 및 기포특성)

  • 김성원;안정렬;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.97-100
    • /
    • 2000
  • 유동층 열교환기 (Fluidized Bed Heat Exchanger; FBHE) 는 온도 균일성이라는 유동층의 특징을 이용하여 적당한 전열면적을 갖는 열교환관을 층 내 설치하여 일정한 양의 열을 전열시키는 것으로, 최근 순환유동층 연소로의 scale-up 을 통한 열용량 증대와 함께 고온의 재순환물질로부터 열을 회수, 연소로의 온도제어 및 열회수율의 극대화를 얻고자 재순환부에 연결하여 사용하고 있다. 또한, 가압순환유동층의 개발과 더불어 유효열전달 면적의 증대를 통한 상대적인 연소로 소형화를 위해 채택되고 있다. 특히, 유동층 열교환기는 전체 공정에서 20-60% 의 열을 회수할 수 있어, 열전달에 있어 매우 중요한 역할을 차지한다.(중략)

  • PDF

Convective Heat Transfer of Using an Ice Slurry in n circular pipe (아이스 슬러리의 원형관내 대류열전달에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.130-135
    • /
    • 2000
  • To enhance heat transfer characteristics of water, fine ice was added to it. The convective heat transfer characteristics of the ice slurry were investigated in a flow loop with a constant heat flux test section. The Nusselt number and Fanning friction coefficient of water flow were found to be similar to the expected curve by Petukhov. The Nusselt number of the ice sin flow was higher than the Nusselt number of water. Effective thermal capacity of the 10.84% ice slurry was found to have 2.39 times of the thermal capacity of water.

  • PDF

A Study on Transport and Heat Utilization of Ice Slurries (아이스 슬러리의 수송 및 냉열이용에 관한 연구)

  • 길복임;이윤표;정동주;조봉현;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF

Enhancement of Convective Heat Transfer by Using a Micro-Encapsulated Phase-Change-Material Slurry (피복된 미립 상변화물질 슬러리를 이용한 대류 열전달의 향상에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1277-1284
    • /
    • 2000
  • To enhance heat transfer characteristics of water, micro-encapsulated octadecane of about $10{\mu}m$ diameter was added to water. Viscosity of the slurry was measured by using a capillary tube viscometer. The measured viscosity decreased as the temperature of the slurry increased, and it increased as the fraction of the capsules in the slurry increased. Thermal characteristics of the octadecane were studied by using a differential scanning calorimeter. The melting temperature and the melting energy of the octadecane were found to be $28.6^{\circ}$ and 34.4kcal/kg, respectively. The convective heat transfer characteristics of the slurry were investigated in a flow loop with a constant heat flux test section. Friction factor of the slurry flow was found to be similar to the expected curve by Petukhov. The Nusselt number of the slurry flow was highest when the octadecane melted. Effective thermal capacity of the 14.2% slurry was found to have 1.67 times of the thermal capacity of water.

Thermodynamic Correlations for Predicting the Properties of Coal-Tar Fractions and Process Analysys (석탄 유분에 대한 물성예측식 개발 및 공정에 대한 연구)

  • Oh, Jun Sung;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.458-466
    • /
    • 2005
  • Full-scale utilizations of batch separation process often require knowledge about thermodynamics and correlation techniques of physical properties of complex mixture consisting of a great number of many unknown components. Various empirical correlations have been proposed to predict the physical properties mostly about the pseudocomponent of petroleum. In this study, one parameter correlations are developed for the calculations of the critical physical properties and ideal heat capacity of the pseudo-component of coal tar fractions. Developed model can provide a tool for the design and operations for the batch distillation of coal tar mixture.

Thermal Performance Evaluation of a Test Cell Thru Short Term Measurements (TEST CELL에서 단기측정에 의한 열성능 평가)

  • Jeon, M.S.;Yoon, H.K.;Chun, W.G.;Jeon, H.S.
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 1990
  • Short-term tests were conducted on a house at KIER, Daejon for its thermal performance evaluation. The test procedure and data analysis were made according to the PSTAR method. Each test period was 3 days during which the building was unoccupied. The data measured with 8 channels were used to renormalize an audit based simulation model of the house. The following are the key parameters obtained in the present analysis: 1) the building loss coefficient(skin conductance plus infiltration conductance during coheating period); 2) the effective building heat capacity; and 3) the effective solar gain. An estimation of total heat required to maintain a standard level of comfort during a typical winter season is also calculated on the basis of the renormalized simulation model and typical long term weather data.

  • PDF

Effect of Preventive Maintenance on Performance of Air Heater in a Power Plant (계획예방정비가 발전소 공기예열기의 성능에 미치는 영향)

  • Jang, Jin-Hyung;Hong, Eun-Kee;Hwang, Kwang-Won;Yun, Rin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.465-469
    • /
    • 2010
  • Air heater used in power plant helps increase the thermal efficiency of the boiler by recovering the heat from the boiler flue gas and thus preventing the loss of useful heat. This study investigates the effect of preventive maintenance on the performance of the air heater in a power plant. Performance indexes for the air heater are calculated to observe the changes in the performance and operation status of the air heater before and after preventive maintenance. The major performance indexes considered are temperature efficiency of the flue gas side, air leakage rate, heat recovery rate, heat transmission rate, and heat capacity ratio. The performance of the air heater is evaluated before and after preventive maintenance; our results show that all the abovementioned performance indexes are improved after the maintenance.

Temporal and spatial distributions of heat fluxes in the East Sea(Sea of Japan) (東海熱收支 의 時.空間的인 分布)

  • 박원선;오임상
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.91-115
    • /
    • 1995
  • Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.

  • PDF